![](/_pu/10/s93215714.jpg)
Важной концепцией, играющей большую роль в современном понимании Вселенной являются вакуумы, или vacua по-латыни, множественная форма слова «вакуум».
Вы, возможно, знаете, что физики называют вакуумом пустое пространство, в котором ничего нет – ни воздуха, ни даже залётных элементарных частиц. Но тогда есть нечто странное в идее вакуума во множественном числе. Явно к этому понятию добавлено ещё что-то! Именно это мы и попытаемся объяснить.
Что же такое ложный вакуум? Сама гипотеза о существовании двух видов вакуума возникла в 70-х годах прошлого века, но развитие получила гораздо позже в работах Стивена Хокинга. Обычно под словом вакуум люди понимают пространство, в котором отсутствует вещество или его чрезвычайно мало, но, с точки зрения физики, это не так.
Вакуум в физике означает отсутствие не только обычного вещества, но и, вообще, чего бы то ни было: полей, нейтрино и т.д. Если мы возьмём контейнер и откачаем из него все частицы воздуха, то в нём всё равно останутся электромагнитные поля от радиовышек, далёких звёзд и реликтового излучения; его будут прошивать триллионы нейтрино и частицы галактических лучей, но, допустим, что мы смогли это всё убрать и получить пустой контейнер.
Казалось бы, вот он вакуум, в котором ничего нет и энергия в этом пространстве должна быть нулевой, но не тут-то было. Дело в том, что во Вселенной есть множество вещей, которые принципиально невозможно убрать из нашего контейнера. К ним относятся квантовые флуктуации, на микроуровне вакуум постоянно кипит, там рождаются и аннигилируют частицы, такое кипение является свойством самого вакуума и его невозможно остановить.
Тёмная энергия, по всей видимости, является свойством самого пространства и от неё так же не спрятаться, поле Хиггса пропитывает всю Вселенную и от него не защитится. Вдобавок к этому во Вселенной могут быть и другие поля о существовании которых мы возможно даже не знаем. В результате энергия внутри контейнера будет ненулевой, такое состояние когда-то назвали истинным вакуумом.
Но практически сразу же учёные одумались, ведь что если где-то тёмной энергии меньше или поле Хиггса имеет другие свойства или же вакуум слабее кипит и там энергия вакуума будет меньше? Это значит, что наш вакуум ложный, а где-то может существовать истинный вакуум с более низким значением энергии.
Мы бы могли жить спокойно и даже не подозревать о существовании ещё одного вакуума, если бы не одна маленькая проблема. Во Вселенной всё стремится к минимуму энергии, а значит ложный вакуум стремится перейти в истинный. В обычных условиях это может произойти лишь через квантовое тонелирование, однако, такой сценарий имеет крайне низкую вероятность, ведь вакуумы разделены высоченными и толстыми энергетическими "горами", но вот если в точку пространства зарядить побольше энергии (Чумака не предлагать), приблизительно 100 млн ТеВ по расчётам Хокинга, то ложный вакуум в этой точке может перескочить в истинный.
И перескочит он не сам, а потянет за собой соседей и на скорости света этот переход будет распространяться по Вселенной. Как только вакуум будет переходить в истинный, его свойства будут меняться неизвестным образом, а с ними будут меняться и законы физики. Возможно, что вещество при контакте с истинным вакуумом будет рассыпаться на кварки или моментально аннигилировать, возможно, оно тут же затвердеет и превратится твёрдое тело, точный сценарий науке неизвестен, но ясно, что Вселенная не будет такой, как прежде. В любом случае такой конец света не будет ни страшным, ни болезненным, мы не сможем узнать о нём заранее, а когда он придёт то даже не успеем ничего почувствовать ибо мгновенно исчезнем.
Подобный переход будет распространяться со скоростью, не превышающей световую, а значит если он случится лишь в одной точке Вселенной, то он не сможет поглотить её всю, это связано с ускоренным расширением Вселенной. Переход ложного вакуума в истинный уничтожит лишь часть Вселенной, до которой успеет добраться за время её существования.
Эта научная гипотеза, согласно которой наша Вселенная, на самом деле, находится на ложном этапе, являясь частью более крупной Вселенной, как нечто временное. Чтобы лучше понять это, представьте себе Вселенную в форме кастрюли с кипящей водой, в которой мы находимся лишь в пузырьках, образующихся на дне кастрюли. Однако, в конце концов, этот ложный вакуум лопнет, и мы, а также все, что мы знаем в видимой Вселенной, исчезнет в мгновение без каких-либо предупреждений, и мы ничего не сможем сделать.
Элементарные частицы в квантовой теории поля описываются не как микроскопические твердые шарики, не как материя, а как колебания квантовых полей. Как и любая другая физическая система, поле стремится минимизировать свою энергию, избавиться от лишних частиц и «скатиться» в самое энергетически выгодное состояние. В теоретической физике такое состояние принято называть вакуумом.
Вопреки своему названию такой вакуум не является пустым – на самом деле в нем постоянно рождаются и умирают виртуальные пары частица-античастица. Однако энергия такого «бульона» из виртуальных частиц все-таки меньше, чем энергия «супа» с примесью частиц настоящих.
Для большинства полей, которые описывает Стандартная модель, энергетически выгодно скатиться в такое вакуумное, нулевое состояние – графически такой потенциал выглядит как ямка, которая симметрична относительно оси, проходящей через начало координат.
Однако для поля Хиггса это не так: его потенциал напоминает скорее «мексиканскую шляпу», чем «ямку», и более выгодным становится отличное от нуля положение. В результате все пространство оказывается пронизано полем постоянной напряженности, которое мешает частицам ускоряться и придает им массу – то есть полем Хиггса. По современным представлениям, на больших энергиях потенциал поля Хиггса загибается вниз, чтобы образовать вторую ямку, расположенную ниже той ямки, в которой мы живем. Хотя обе ямки разделяет высокий потенциальный барьер, поле может протуннелировать через него и свалиться в более выгодное состояние, лежащее в области гораздо больших энергий (порядка 10^12 тераэлектронвольт). Поэтому наш вакуум считается «ложным», то есть не отвечающим настоящему минимуму поля Хиггса.
Как предсказывает теория, в некоторых случаях может произойти спонтанный переход Вселенной из ложного вакуума в истинный (так называемый «распад ложного вакуума»), при этом будет выделяться огромная энергия.
Обычно этот переход описывают как спонтанное образование пузырьков истинного вакуума в ложном. При благоприятных условиях эти пузыри будут бесконечно расширяться, а при неблагоприятных – схлопываться. Это напоминает кипение воды, только вместо пузырьков пара мы имеем дело с истинным вакуумом. В частности, именно поэтому некоторые люди боятся экспериментов на LHC – они считают, что эти эксперименты могут вызвать подобный переход.
В действительности такие опасения не очень основательны, поскольку энергии, достигаемые на коллайдере малы – их недостаточно для появления пузырей истинного вакуума. Кроме того, при известных нам параметрах Стандартной модели время жизни ложного вакуума превышает текущий возраст Вселенной, то есть в рамках этой модели наш вакуум является метастабильным – то есть для нас он не отличается от истинного.
Некоторые теоретики предсказывают, что в определенных ситуациях распад ложного вакуума может ускоряться. Например, вокруг черной дыры пространство-время сильно искривляется, и правила подсчета энергии ложного вакуума несколько изменяются, что должно увеличивать вероятность распада. При этом чем меньше черная дыра, тем проще вокруг нее образуются пузырьки и тем больше вероятность распада. С другой стороны, мы до сих пор продолжаем жить в ложном вакууме, что указывает либо на отсутствие таких черных дыр, либо на недостатки в наших теориях, либо на наше невероятное везение.
Вполне возможно, что бозон Хиггса связан с очень необычным сценарием конца света – молниеносным, необратимым и неизбежным.
Каждую минуту существования нас сопровождает один печальный факт: всему когда-нибудь придет конец. И Вселенная не исключение. Согласно современному пониманию физики, есть несколько догадок о том, что может произойти в далеком беспросветном будущем. Вселенная может остыть до такой степени, что в ней попросту ничего не сможет выжить, или она внезапно коллапсирует. Однако ни один из этих гипотетических концов всего не так умопомрачителен, как распад вакуума.
При этом жутком сценарии где-то во Вселенной должен появиться пузырек. Законы физики внутри него в корне отличаются от тех, что царят снаружи. Пузырь расширяется со скоростью света, в итоге поглощая всю Вселенную. Галактики разлетаются, атомы не могут удерживать свои компоненты, а взаимодействия частиц меняются на фундаментальном уровне. Какую бы форму Вселенная ни приняла впоследствии, она определенно станет непригодной для жизни человека.
Чтобы понять, что такое распад вакуума, сначала следует разобраться, что такое вакуумное состояние. У большинства людей слово «вакуум» ассоциируется с открытым космосом и другими областями, в которых нет материи. Однако открытый космос, на самом деле, не пустой. Напротив, в нем есть флуктуирующие квантовые поля, производящие частицы, которые отвечают за фундаментальные законы физики во Вселенной. Когда это пространство достигает минимального энергетического уровня, говорят, что оно находится в вакуумном состоянии. Тем не менее эти квантовые поля, несмотря ни на что, продолжают работу, удерживая таким образом ткань реальности от разрушения.
Нам известны 17 частиц, которые появляются при возмущении квантовых полей – или, другими словами, когда квантовое поле получает энергию. Одна из таких частиц – фотон, который мы воспринимаем как свет и который отвечает за электромагнитные излучения вроде рентгеновского и микроволнового среди прочих. Также есть кварки, которые собираются в протоны и нейтроны в атомных ядрах. Другие частицы – частицы взаимодействий – вроде сильного и слабого, – которые в итоге диктуют, как работает Вселенная.
Когда основополагающие квантовые поля, производящие эти частицы, находятся в своих вакуумных состояниях, Вселенная стабильна. Исходя из определения, вакуумное состояние не может терять энергию, так как, если бы было справедливо обратное, работа фундаментальных частиц также была бы иной, а значит, и Вселенная перестала бы работать так, как она это делает сейчас.
Большинство квантовых полей, судя по всему, находятся в своих квантовых состояниях, а значит, стабильны, а мы – в безопасности. Однако измерить эти вещи крайне сложно. Возможно, одному квантовому полю еще предстоит достичь своего вакуумного состояния: речь идет о поле Хиггса.
Поле Хиггса и связанный с ним бозон Хиггса отвечают за наличие у всего во Вселенной массы. Именно поэтому у фотонов массы нет, а у Z-бозонов ее очень мало – по крайней мере, для квантовой частицы. Само по себе это поле важно для взаимодействия фундаментальных частиц друг с другом.
Возможно, поле Хиггса «застряло» на определенном энергетическом уровне. Представьте мяч, который катится с холма, – все другие поля «скатились» к подножию, но поле Хиггса могло застрять в маленькой впадине посреди него, из-за чего не достигло подножия.
Если низшая возможная энергия, доступная полю, называется вакуумным состоянием, то эту впадину можно считать ложным вакуумом: он выглядит стабильным, но в нем на самом деле больше энергии, чем там, где поле Хиггса «хочет» быть. Чтобы понять, из-за чего поле Хиггса могло застрять, нужна немалая помощь математики, но в рамках этой статьи нам важно знать: физики считают, что полю Хиггса еще, возможно, есть где развернуться, прежде чем достичь вакуумного состояния.
Проблема в том, что Вселенная зависит от свойств поля Хиггса в его нынешнем состоянии. Что же может вытолкнуть его из этой впадины? Скорее всего, для этого потребовался бы невероятный объем энергии. Но это также может произойти из-за странного квантового феномена, известного как квантовое туннелирование. Так как квантовые частицы ведут себя волнообразно, есть вероятность, что они могут пройти сквозь препятствие, а не обойти его. Это можно представить как прохождение сквозь впадину, которая удерживает поле Хиггса на его месте.
Если бы поле Хиггса вырвалось из ложного вакуума и спустилось до своего настоящего вакуумного состояния, то правящие Вселенной физические законы попросту разрушились бы. При нарушении тонкого баланса между квантовыми частицами поле Хиггса вырвалось бы из ложного вакуума, порождая по всей Вселенной эффект домино под названием распад вакуума. Именно в этом случае пузырь распада вакуума распространился бы по всей Вселенной на скорости света. При его прохождении через пространство, все – материя, взаимодействия Вселенной – перестало бы работать и существовать в привычном для нас виде.
А что произойдет после этого, невозможно даже вообразить. Законы физики станут совершенно другими и – более чем вероятно – сделают наше существование невозможным. Возможно, атомы больше не смогут удерживаться в общих структурах, химикалии будут вступать в новые, неизвестные реакции, также произойдут многие другие вещи, которые мы не можем представить.
К счастью, эта теория основана на нашем нынешнем понимании Вселенной, которое, мягко говоря, далеко не полное. Мы не знаем наверняка, действительно ли поле Хиггса находится в ложном вакууме, мы знаем лишь, что это вероятно. Более того, чтобы поле Хиггса вышло из ложного вакуума, может понадобиться очень много времени – гораздо больше, чем мы просуществуем как вид. И если это событие действительно произойдет, мы не сможем сделать ничего, чтобы это предотвратить. Как отметил физик-теоретик Шон Кэрролл, если это случится, то мы даже не заметим, так как все произойдет невероятно быстро. Так что, если распад вакуума – один из возможных сценариев конца существования всего, нам просто следует свыкнуться с этой мыслью.
Ученые впервые использовали квантовый симулятор для моделирования распада ложного вакуума – энергетического состояния, в котором может находиться наша Вселенная. Это поможет космологам проверять многие теории формирования Вселенной, надеются ученые. Описание их исследования опубликовал научный журнал Nature Physics.
"Наша работа открыла дорогу для изучения того, какую роль квантовые флуктуации играли в фазовых переходах в ранней Вселенной, в том числе в процессе распада "ложного вакуума". Что особенно примечательно, мы изучаем тайны самой горячей и плотной материи мироздания при помощи набора из очень холодных и небольших атомов", – рассказал один из авторов работы, сотрудник Кембриджского университета По Сун.
Одним из следствий гипотетического существования поля Хиггса и бозонов Хиггса может быть то, что Землю окружает не настоящий, а так называемый ложный вакуум. Он почти столь же стабилен, как и истинный, однако самое низкое энергетическое состояние, в котором могут находиться частицы в нашем мире, равно не нулю, а какому-то другому значению. Энергия частиц не может опуститься ниже этого порога, даже если ложный вакуум сохраняет стабильность.
Ученых давно интересует, как ведет себя ложный вакуум, так как от его свойств зависит, существуют ли параллельные миры и угрожает ли нашей Вселенной внезапная гибель в результате его распада. Нечто подобное, как предполагают теоретики, может произойти внутри сверхмассивных черных дыр в далеком будущем, однако проверить это предположение до недавнего времени ученые не могли.
Физики из Британии выяснили, что подобные процессы можно просчитать при помощи квантового симулятора. Так ученые называют аналоговое вычислительное устройство, заполненное большим числом атомов и других квантовых объектов, поведением и свойствами которых исследователи могут управлять. Это позволяет использовать их для наблюдений за сложными физическими процессами, просчитать которые на суперкомпьютере практически невозможно.
Ученые предположили, что для создания полноценного аналога ложного вакуума можно использовать набор из атомов рубидия-87, которые обычно используются при создании квантовых симуляторов. Это связано с тем, что эти частицы могут находиться в двух разных состояниях, в одном из которых они ведут себя, как сверхтекучая жидкость, а в другом – как экзотическая форма материи, которую физики называют изолятором Мотта.
По Сун и его коллеги обнаружили, что резкое превращение атомов рубидия-87 из одного состояния в другое, фазовый переход первого рода, можно запустить, если просто потрясти емкость, где находятся эти частицы. В результате этого происходит процесс, идентичный по своей природе тому, как должен распадаться или возникать ложный вакуум.
Последующие опыты, как надеются ученые, позволят им проверить многие популярные космологические теории, описывающие процесс формирования Вселенной. В частности, физики из Британии планируют проверить так называемую теорию вечного расширения Вселенной в результате непрерывного образования пузырей ложного вакуума, которая была сформулирована еще в 1983 году советскими космологами Александром Виленкиным и Андреем Линде.
Физик-теоретик из Стэнфорда уточнил скорость распада ложного вакуума (что приведет к исчезновению нашей Вселенной), вычислив для нее нижнюю и верхнюю границы. Кроме того, ученый обобщил этот результат, включив в рассмотрение гравитацию – оказалось, что в этом случае нижняя граница исчезает, однако верхняя выглядит так же, как и в случае плоского пространства. Статья опубликована в Physical Review D.
В квантовой теории поля частицы представляют собой колебания полей, которые отсчитываются от некоторого состояния с наименьшей возможной энергией, называемого вакуумом. Эти поля заполняют все пространство Вселенной, так что назвать ее абсолютно пустой нельзя. Для большинства полей Стандартной модели потенциал устроен таким образом, что полю энергетически выгодно скатиться в нулевое состояние – качественно такой потенциал выглядит как ямка, которая симметрична относительно оси, проходящей через начало координат. Однако для поля Хиггса это не так: его потенциал напоминает скорее «мексиканскую шляпу», чем «ямку», и более выгодным становится отличное от нуля положение. В результате все пространство оказывается пронизано полем постоянной напряженности, которое мешает частицам ускоряться и придает им массу.
Более того, по современным представлениям на больших энергиях потенциал поля Хиггса снова загибается вниз, чтобы образовать вторую ямку, расположенную ниже той ямки, в которой мы живем. Хотя обе ямки разделяет высокий потенциальный барьер, поле может протуннелировать через него и свалиться в более выгодное состояние. Это значит, что рано или поздно ложный вакуум Стандартной модели прекратит свое существование и перейдет в истинный вакуум, а энергию колебаний поля придется отсчитывать от абсолютного минимума, а не от локального. Процесс такого перехода называют распадом ложного вакуума. В результате распада ложного вакуума огромная энергия, запасенная полем, высвободится – в конечном счете, это выразится в образовании большого числа частиц и приведет к повторному разогреванию Вселенной.
Тем не менее, процесс распада ложного вакуума довольно сложен. Так, поле не может перейти из ложного вакуума в истинный одновременно во всем объеме Вселенной, поскольку вероятность такого перехода слишком мала. Гораздо более вероятен другой сценарий, в ходе которого поле случайно туннелирует из ложного вакуума в истинный только в некотором ограниченном объеме, а затем образовавшийся пузырек бесконечно расширяется или схлопывается обратно.
Чтобы рассчитать скорость распада по такому сценарию, необходимо найти конфигурацию поля, которая решает классические уравнения движения и описывает плавный переход между истинным вакуумом внутри пузырька и ложным вакуумом снаружи. Такая конфигурация называется инстантоном. Поскольку уравнения движения выводятся исходя из принципа наименьшего действия, на инстантонах действие поля принимает наименьшее значение. С другой стороны, в функциональном интеграле, который описывает вероятность распада, действие стоит в показателе быстро осциллирующей экспоненты – следовательно, инстантоны будут давать наибольший вклад в эту вероятность.
Используя подобные соображения, в 1977 году физик-теоретик Сидни Коулмен вычислил скорость распада ложного вакуума B для скалярного поля – оказалось, что она зависит не только от разности между уровнями «ложной» и «истинной» ямки, но и от поверхностного натяжения пузырька σ. Для этого Коулман использовал приближение тонкой стенки, в котором поле резко переходит из истинного вакуума внутри пузырька в ложный вакуум снаружи, то есть предполагал, что размеры переходной области много меньше размеров пузырька. При этом натяжение стенки Коулман оценивал снизу, предполагая, что полю достаточно «перепрыгнуть» через стенку до того же уровня, на котором оно находилось изначально, а дальнейшее движение оно продолжит без всяких проблем. До последнего времени было неизвестно, насколько оправдано такое приближение – другими словами, было неясно, насколько велика погрешность рассчитанной таким образом скорости распада.
В новой работе американский физик-теоретик Адам Браун уточнил эту оценку, то есть нашел как нижнюю, так и верхнюю границу для скорости распада: B[σmin]≤B≤B[σmax]. Оказалось, что нижней границей, как и предполагалось, является результат Коулмена, в котором натяжение стенки минимально, а верхняя граница находится из предположения, что поле полностью протуннелировало из ложного вакуума в истинный.
Каждое из неравенств ученый доказывал по-разному. Чтобы доказать первое утверждение, физик изменил потенциал поля специальным способом, добавив в него разрыв. С одной стороны, скорость распада ложного вакуума в таком потенциале будет больше, чем в исходном; с другой стороны, она будет совпадать со скоростью B[σmin], рассчитанной для минимального возможного натяжения стенки пузыря. Для доказательство второго неравенства ученому достаточно было показать, что определенная конфигурация полей действительно приводит к значению B = B[σmax], и Браун такую конфигурацию нашел.
Кроме того, теоретик обобщил эти результаты, включив в рассмотрение гравитацию, то есть предполагая, что энергия поля искривляет пространство-время. В этом случае скорость распада зависит не от разности уровней ложного и истинного вакуума, но от каждого из значений по отдельности. В то же время, в такой модели нижняя граница для скорости распада отсутствует – так, в пространстве де Ситтера натяжение стенки σmin может быть сколь угодно большим, но скорость распада ложного вакуума все равно стремится к нулю. Тем не менее, ограничение сверху, выведенное для пустого плоского пространства, продолжает выполняться, то есть по прежнему B≤B[σmax].
Доказательство в данном случае также разбивается на рассмотрение двух частных случаев, в одном из которых изменение энергии при образовании пузырька неограниченно растет при увеличении радиуса пузырька, а в другом – неограниченно снижается. В первом случае ограничение энергии, а следовательно, и скорости распада, возникает естественным образом (скажем, по теореме Ролля); во втором случае оказывается, что B[σmax]=∞, и равенство B≤B[σmax] опять-таки выполнено.
Все рассуждения в данной работе выполнялись в предположении пустого пространства, однако присутствие сингулярностей в виде черных дыр, особенно черных дыр малой массы, могло бы изменить скорость распада ложного вакуума. Тем не менее, недавно японские физики-теоретики показали, что существенного увеличения скорости перехода и метастабильного состояния в стабильное рядом с черными дырами наблюдаться не должно – черные дыры обязательно окружены температурным фоном частиц из-за излучения Хокинга, который необходимо учитывать при расчете вероятности образования пузырька истинного вакуума. Из-за этого фона скорость образования пузырьков почти не меняется даже около небольших черных дыр.
В двадцать первом веке очевидные, казалось бы, слова Лукреция сначала поставили под сомнение, а вскоре и вовсе опровергли. Оказывается, можно получить что-то из ничего, если это ничто подчиняется законам квантовой физики. Более того! Космологи пришли к заключению, что вся наша Вселенная могла возникнуть из ничего – из пустоты, вакуума.
Впрочем, в семидесятых годах прошлого века вопрос стоял иначе: почему Вселенная плоская?
Вселенная расширяется, это было известно со времён открытия красного смещения в спектрах галактик. Причину разбегания галактик связывали с Большим взрывом, произошедшим, по тогдашним оценкам, около 10 миллиардов лет назад. Наблюдения не противоречили уравнениям общей теории относительности. Но был важный нюанс.
Согласно уравнениям Эйнштейна, пространство может быть замкнутым (метрика Римана), плоским (евклидовым) или открытым (метрика Лобачевского).
Замкнутое (закрытое) пространство можно изобразить в виде сферы, на поверхности которой мы находимся: сфера имеет конечную площадь, но не имеет границ. «Прямые» линии, проведённые в замкнутом пространстве, непременно пересекутся, а если вы отправитесь путешествовать по прямой, то в конце концов вернётесь в точку, откуда вышли. Сумма углов треугольника, построенного в замкнутом пространстве, всегда больше 180 градусов.
Плоское пространство в двумерной интерпретации – это плоский, бесконечных размеров лист. Именно плоский мир описывал Евклид, именно в плоском мире сумма углов треугольника всегда в точности равна 180 градусам.
Открытое пространство выглядит иначе: в самом простом варианте оно напоминает седло бесконечных размеров. В отличие от закрытого пространства, где нет параллельных прямых, в открытом пространстве существует множество никогда не пересекающихся прямых, а сумма углов треугольника здесь всегда меньше 180 градусов.
Каким является пространство нашей Вселенной – замкнутым, плоским или открытым, – зависит от того, какова полная средняя плотность массы – энергии. При критической плотности (в наши дни она равна приблизительно 10^-29 г/см3) Вселенная – плоская. Если плотность больше и массы во Вселенной достаточно, чтобы гравитационные силы смогли затормозить и в конце концов вовсе остановить расширение, то Вселенная – замкнутая.
Наступает момент, когда расширение прекращается и Вселенная начинает сжиматься. Если в момент Большого взрыва возникает замкнутая Вселенная с плотностью хоть ненамного больше критической, то со временем отличие пространства от плоского возрастает, и в наши дни плотность массы во Вселенной должна быть на много порядков больше критической величины 10^-29 г/см3.
Если в момент Большого взрыва плотность массы во Вселенной была хоть ненамного меньше критической, то при расширении эта разница должна возрастать, гравитационные силы не могут справиться с расширением, и оно продолжается вечно. А мы сейчас должны наблюдать, что плотность массы во Вселенной на много порядков меньше критической.
Если же средняя плотность массы в момент Большого взрыва была чрезвычайно близка (или в точности равна) к критической, то в очень далёком будущем расширение Вселенной прекратится, но сжатие после этого так и не начнётся – Вселенная навеки застынет. А сейчас средняя плотность массы во Вселенной отличается от критической не очень значительно. По оценкам астрофизиков, сделанным в семидесятые годы, плотность массы во Вселенной, если и отличалась от критической, то максимум на один-два порядка.
Казалось бы, отличие в 10-100 раз – очень много! На самом деле это не так. Ведь, как уже было сказано, со временем, при расширении, отличие пространства от плоского возрастает, и если сейчас это отличие находится в интервале 10-100 раз, то первоначально, в момент Большого взрыва, оно не могло превышать 10^-60! Это такая ничтожная величина, что не мог не возникнуть вопрос: неужели кто-то специально «подогнал» параметры так, чтобы Вселенная оказалась плоской?
Конечно, точность наблюдений в семидесятые годы была невысока, среднюю плотность массы удавалось измерить лишь в пределах порядка величины, но порядок этот был близок к ожидаемой плотности плоской Вселенной.
И ещё. Вселенная заполнена галактиками, звёздами, скоплениями и в масштабах, сравнимых с размерами самих галактик, выглядит очень неоднородной. Но в гораздо больших масштабах, сравнимых с размерами Вселенной, наш мир чрезвычайно однороден – в любом месте средняя плотность массы примерно одна и та же. Почему?
Американский астрофизик Алан Гут в 1980 году предложил необычную, но красивую идею, не только объяснявшую, почему Вселенная плоская и однородная, но решавшую и другие проблемы космологии.
Впрочем, как это часто случается в науке, у гипотезы, которую Гут излагал на самых разных конференциях, имелась предыстория. Годом раньше были опубликованы работы советских физиков Вячеслава Муханова и Алексея Старобинского, где они изложили идеи, которые затем «озвучил» Гут. Однако гипотеза советских учёных не нашла отклика у физиков.
А вот Гут сумел привлечь внимание к новой идее, и на неё «набросились» другие физики, среди которых были Андрей Линде и Александр Виленкин, сумевшие справиться с недостатками предыдущих версий.
Наша Вселенная, как сейчас утверждают многие космологи, возникла в тот момент Большого взрыва, когда плотность и температура материи достигали невероятно огромных значений: температура была около 10^32 Кельвинов, а плотность – 10^93 г/см3! Быстро расширяясь, Вселенная остывала, а плотность вещества в ней уменьшалась.
Предположение космологов заключалось в том, что Большому взрыву предшествовала чрезвычайно короткая стадия расширения пространства, названная ими инфляционной по аналогии с обычной инфляцией в экономике. При инфляции цены растут, удваиваясь за относительно постоянный промежуток времени. В экономике этот промежуток времени исчисляется годами или даже (при низкой инфляции) десятилетиями, а при космической инфляции размер пространства ещё, по сути, не родившейся Вселенной удваивался за «планковское время», то есть за каждые 10^-43 секунды! И потому уже через малую долю секунды после начала инфляционного процесса пространство расширилось чуть ли не до размеров нынешней Вселенной!
Разве это возможно? Ведь ничто материальное не может перемещаться со сверхсветовыми скоростями. Верно – но расширялось не вещество, которого тогда ещё не было, а само пространство, пустое ничто. Точнее – так называемый ложный вакуум, в котором происходили квантовые флуктуации.
Как выяснили физики, пустое пространство, вакуум (в обычном нашем представлении – ничто!) может находиться в различных физических состояниях. Есть, например, обычный вакуум в состоянии с минимальной энергией, а есть вакуум ложный – его энергия минимальна лишь локально. Иными словами: этот минимум неустойчив, и ложный вакуум в конце концов переходит в состояние обычного вакуума.
Одна из квантовых флуктуаций в ложном вакууме и привела к тому, что силы гравитационного отталкивания значительно превысили силу притяжения, и пространство начало чрезвычайно быстро «раздуваться». В принципе, такое «раздувание» может продолжаться вечно («бесконечная инфляция», по Гуту), но ложный вакуум, к счастью для нас, нестабилен, и в какой-то момент в какой-то точке «раздувающегося» пространства он распался. Произошёл, как говорят физики, фазовый переход – ложный вакуум перешёл в более устойчивое состояние с низкой энергией и превратился в обычный вакуум. А вся «лишняя» энергия ложного вакуума выделилась, вот тогда-то и возник раскалённый до невообразимых температур шар из обычного вещества и излучения, продолживший по инерции расширяться – конечно, со скоростью, меньшей, чем скорость света. Родились протоны и электроны, через несколько сотен тысячелетий они объединились в атомы водорода, затем возникли первые звёзды, галактики, скопления галактик, планеты, в том числе Земля…
Но Большой взрыв происходит там, где ложный вакуум превращается в обычный. В целом же инфляция продолжается, пространство «раздувается», и родившаяся Вселенная оказывается погружена в этот безудержно расширяющийся (инфлирующий, как говорят космологи) ложный вакуум. В другой его точке тоже происходит фазовый переход нестабильного вакуума в обычный, и наблюдается ещё один Большой взрыв, рождается ещё одна вселенная. И в третьей точке, четвёртой, пятой… миллионной… Рождается огромное (возможно, бесконечное!) количество вселенных, и каждая из них живёт по своим физическим законам («хаотическая инфляция», по Линде).
Одни вселенные существуют доли секунды и «схлопываются», поскольку плотность массы оказывается слишком большой. Другие живут бесконечно долго, если плотность массы в них мала. Новорождённые вселенные состоят из обычной материи, которая не может перемещаться быстрее света. А ложный вакуум, куда эти вселенные погружены, продолжает «раздуваться», пространство между вселенными увеличивается со сверхсветовой скоростью, и, значит, рождённые вселенные очень быстро удаляются друг от друга на такие огромные расстояния, что всякие контакты между ними становятся невозможны.
|