На улицах наших городов мы привыкли видеть немало растений, которые выполняют, как правило, чисто декоративную функцию. Но что, если всю эту флору можно было бы наделить дополнительными функциями? Скажем, днем растения вырабатывают кислород, а ночью – освещают улицы? Звучит фантастично, но на самом деле подобное уже скоро может стать реальностью.
В действительности же такая идея не лишена смысла и по экономическим соображениям, ведь, согласно данным различных исследований, на освещение улиц в ночное время тратится от 10 до 20% всего производимого электричества. Ученые уже вплотную приблизились к созданию биолюминесцентных растений, причем подобная затея может оказаться не такой уж невыполнимой, как кажется на первый взгляд.
Множество живых организмов обладают способностью светиться в темноте. Более того, раньше ученым уже удавалось «активировать» необходимые гены у растений. К примеру, получилось добиться свечения листьев табака, применив генную инженерию.
Но вот ученые из Массачусетского технологического института решили использовать нанотехнологии. Они создали кремниевые и полимерные наночастицы, которые способны перемещаться внутри листьев и стеблей растений в определенном направлении, тем самым «выделяя» свет. Внутри каждой из частиц содержится одно из трех веществ: люциферин (который испускает свет), люцифераза (фермент, заставляющий люциферин светиться) и кофермент А (он повышает активность люциферазы). Все три наночастицы под давлением в водной среде помещаются в устьица растений.
В итоге ученым удалось добиться свечения листьев растения, которое в 100 тысяч раз превышало таковое у генно-модифицированного собрата. Самым интересным является то, что свечение с легкостью можно «отключить», добавив соединение, блокирующее любое из трех вышеперечисленных веществ. На данный момент максимальный период свечения растений равняется четырем часам, но ученые планируют увеличить этот показатель.
Инженеры Массачусетского технологического института (США) модифицировали жеруху обыкновенную, введя в ткань листьев люминесцентные наночастицы так, чтобы в темное время суток растение светилось. Сейчас трава светится на протяжении четырех часов; авторы идеи считают, что дальнейшая доработка позволит увеличить светимость и продолжительность свечения до такой степени, что в темной комнате возле небольшого горшка с растением можно будет читать, а клумба сможет освещать ночные улицы. «Идея в том, чтобы растения можно было использовать для освещения помещений или улиц в ночные часы», – комментирует руководитель исследовательской группы Майкла Страно. Такие растения могли бы сократить затраты электроэнергии на освещение, которые сегодня составляют около пятой части глобального энергопотребления.
Химическая реакция, в ходе которой энергия выделяется в форме света, происходит в результате окисления пигментов класса люциферинов в присутствии соответствующих ферментов – люцифераз. В ряде предыдущих исследований свечение живых организмов достигалось за счет генетических модификаций, в результате которых люциферины и люциферазы синтезировались в клетках растения. Группа Майкла Страно предлагает подход, не предусматривающий манипуляций с геномом растений. Вместо этого и пигмент, и окислительный фермент вводятся в ткани растения в составе наночастиц на основе кремния (для люциферазы) и полилактид-ко-гликолида (для люциферина); растения вымачивают в растворе частиц, а затем подвергают воздействию высокого давления, в результате чего наночастицы проникают в ткань через микропоры листа. В состав раствора также входят хитозановые наночастицы с коферментом A, который способствует выведению побочных продуктов реакции окисления люциферина, связывающих люциферазу и ингибирующих реакцию.
Частицы, несущие люциферин и кофермент A, накапливаются во внеклеточном пространстве паренхимы (внутреннего слоя листа), а частицы, несущие люциферазу, за счет меньшего размера проникают сквозь мембрану клеток паренхимы. Высвобождаясь из наночастиц, пигмент также попадает внутрь клеток, где вступает с люциферазой в реакцию, в результате которой растение испускает свет.
Первые опытные образцы светились всего по 45 минут, последние – уже почти по 4 часа; в идеале одного сеанса обработки раствором с наночастицами должно хватать для того, чтобы листья светились на протяжении всей жизни растения, считают авторы разработки. В дальнейшем ученые рассчитывают упростить процесс доставки наночастиц в ткани растений – к примеру, создать спрей, обработки которым будет достаточно для того, чтобы превратить в фонарь взрослое дерево или газон. Все наночастицы, использованные в экспериментах, прошли проверку и получили одобрение Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США как безопасные для человека.
Первые «условно светящиеся» растения были получены группой Стивена Хоувелла в 1986 году. Генетически изменённые морковь и табак содержали только саму люциферазу (фермент, стимулирующий свечение), но в них отсутствовал люциферин (сам светящийся пигмент). Проблема заключалась в том, что для получения люциферазы достаточно внедрить в ДНК всего один ген, а для выработки люцеферина требуется множество различных генов, собирающих его «по кусочку».
Как результат, полученные растения сами по себе света не излучали – их надо было опрыскивать люциферином или добавлять его в почву. Это, кстати, можно заметить и на фотографиях, которые впоследствии стали символом проекта Glowing Plant. На них у табака сильнее всего светятся корни и сосуды, – но не потому, что там лучше работает люцифераза, а потому, что по ним из почвы движется субстрат.
Первое растение, способное светиться само по себе, было получено гораздо позже – лишь в 2010 году. Над ним работали Александр Кричевский и его коллеги из университетов Нью-Йорка и Израиля. Для того, чтобы заставить табак производить собственный люциферин, ученые использовали блок генов из люминесцирующих бактерий Photobacterium leiognathi. При этом гены встроили в геном хлоропластов – таким образом, чтобы они не могли распространяться с пыльцой.
Однако трансгенный табак светился очень слабо – его свет едва виден на фотографиях с очень длинной выдержкой. Это объясняется тем, что гены не всегда эффективно работают при переносе из одного организма в другой. Впрочем, это не помешало автору проекта зарегистрировать соответствующий патент. Тем более, что для научного исследования растений такая генетическая система вполне подходила.
Учёных вообще хлебом не корми – дай пришить последовательность люциферазы к любым интересным генам, чтобы можно было следить за тем, как их активация сопровождается свечением. Ведь, в отличие от обычного красителя, она позволяет полностью избавиться от постороннего «шума».
Сама же мысль о том, что подобные рабочие инструменты можно использовать для чего-то совершенно с исследованиями не связанного, появилась у группы студентов из Кембриджского университета. В 2010 году девять светлых умов решили разработать генетическую систему, позволяющую создавать ярко светящиеся «декоративные» организмы.
Студенты дополнили ферменты синтеза люциферина ферментом его регенерации (таким образом решив проблему Кричевского), оптимизировали гены японского светлячка Luciola cruciata для экспрессии в кишечной палочке и провели еще несколько улучшений. В результате они получили штамм бактерий, колбу с которыми можно, например, использовать вместо лампы – такие кишечные палочки дают достаточно света для того, чтобы читать книгу.
В популярной прессе светящимися называют организмы, обладающие и флюоресценцией, и люминесценцией. Оба процесса встречаются в природе (порой у одних и тех же организмов) и оба используются в качестве исследовательских инструментов. Но если флюоресценция предполагает пассивное переизлучение света с небольшим уменьшением энергии и соответствующим сдвигом в длине волны, то люминесценция – это активный процесс, в ходе которого химическая энергия преобразуется в свет.
Ферменты, которые проводят преобразование химической энергии в свет, называются люциферазами, а их субстраты – люциферинами (оба слова происходят от латинского lucifer – «несущий свет»). Несмотря на одинаковое название, между люциферазами и люциферинами, скажем, жуков-светляков и бактерий, помимо собственно функции, очень мало общего: они имеют разное строение, разное происхождение и по-разному работают.
Наиболее известной является система свечения жуков-светляков. В ходе реакции, которую катализирует люцифераза, молекула АТФ, универсальная единица клеточной энергии, активирует люциферин, после чего к нему присоединяется кислород (интересно, что у всех организмов, несмотря на независимое возникновение системы свечения, оно так или иначе связано с окислением). «Магия» происходит в тот момент, когда от окисленного люциферина отделяется CO2: молекула красителя оказывается в возбужденном состоянии, покидая которое она испускает квант света.
Свет, производимый люциферазой, может иметь почти любой оттенок – от сине-зеленого до красного. Здесь, однако, есть интересная тонкость: у многих кишечнополостных (кораллов, медуз и их родственников) в клетках встречаются одновременно и люцифераза, и флюоресцирующие белки (например, небезызвестный GFP). Причем обычно они не просто находятся в одной клетке, но и настолько тесно связаны друг с другом, что возникает квантовый эффект переноса возбуждения: фотон, произведенный люциферазой, не излучаясь, переносится на GFP, который его выбрасывает уже с измененной длиной волны. Поэтому такие беспозвоночные, как Renilla reniformis, светятся не синеватым, а зеленым. Использование GFP позволяет увеличить эффективность излучения за счет того, что флюоресцентный белок по сравнению с люциферином таких организмов менее склонен терять возбужденное состояние без излучения кванта света. У жуков-светляков, равно как и у люминесцентных бактерий, нет белков, подобных GFP, и в этом отношении их система свечения устроена проще.
Потенциал биолюминесценции для исследований ученые распознали сразу же, как только стал известен ее механизм. После появления технологии рекомбинантных ДНК последовательность люциферазы стали «пришивать» к любым интересным генам и следить за тем, как их активация сопровождается свечением. Фармкомпании взяли на вооружение люциферазу взамен обычного красителя в лабораторных тест-системах: она, в отличие от красителей, позволяет полностью избавиться от постороннего «шума». Исследования биолюминесценции, в основном в связи с различными практическими методами ее использования, превратились в целую отрасль биотехнологии со своими журналами, обществами, конференциями и другими атрибутами.
Тем не менее с точки зрения биотехнологии эта система не лишена недостатков. Во-первых, после окисления и испускания кванта света отработанный люциферин уже непригоден для реакции и его требуется регенерировать. Помимо прочего, такой люциферин сам по себе ингибирует работу фермента. Для лабораторных тест-систем этот недостаток не имеет особого значения: в плашку можно просто добавить побольше субстрата. Но если речь идет о создании отдельных светящихся организмов, то регенерация люциферина становится настоящей проблемой.
Во-вторых, если люцифераза светлячков кодируется всего одним геном и его относительно просто внести в геном, то люциферин – это органическая молекула. Чтобы ее синтезировать, в геном нужно вставлять целую батарею генов, которые собирают люциферин из кусочков. Достигнуть этой цели ученым удалось только недавно.
Ученые всегда рассматривали конструкции с люциферазой исключительно как маркеры, способные подсветить интересующие их клетки или помочь измерить активность исследуемых генов. Сама же мысль о том, что подобные рабочие инструменты можно использовать для чего-то совершенно с исследованиями не связанного, появилась у группы студентов, участвовавших в конкурсе iGEM, который вот уже несколько лет организует Массачусетский технологический институт. В рамках этого конкурса молодые ученые из разных стран собираются в команды, придумывают и реализуют небольшие проекты, которые так или иначе могут быть отнесены к области синтетической биологии.
iGEM во многом напоминает конкурсы молодых программистов – команды работают над новыми, необязательно связанными с практикой задачами, а результатом этой работы, по замыслу организаторов, должны быть не какие-то глобальные проекты, а отдельные самостоятельные «методические кирпичики», которые можно будет так или иначе использовать в синтетической биологии. Все проекты конкурса направлены на пополнение так называемого Стандартного перечня биологических расходных частей. Предполагается, что этот перечень станет со временем чем-то вроде репозитория программ, который уже много лет используют энтузиасты открытого исходного кода. На iGEM были придуманы среди прочего биосенсор мышьяка, генетическая система, заставляющая бактерии производить пигменты разного цвета в зависимости от концентрации тестового вещества, и даже штамм микроорганизмов, который может использоваться (пока только теоретически) в качестве кровезаменителя.
Именно на конкурсе iGEM в 2010 году девять студентов из Кембриджского университета решили разработать основанную на люциферазе из светлячков генетическую систему, позволяющую создавать ярко светящиеся организмы. Студенты дополнили ферменты синтеза люциферина ферментом его регенерации, оптимизировали гены для экспрессии в кишечной палочке и провели еще несколько улучшений. В результате они получили штамм бактерий, колбу с которыми можно, например, использовать вместо лампы – такие кишечные палочки дают достаточно света для того, чтобы читать книгу.
О работе студентов писали популярные издания, а сами они уже мечтали освещать дороги при помощи лесополосы из светящихся тополей. Интересно, что даже «зеленая» пресса в тот момент отнеслась к такой фантастической идее благосклонно, рассматривая ее как способ сократить выброс углекислого газа. Но только до тех пор, пока «фантастика» не начала превращаться в реальность.
Возникновение дерзкого проекта, поставившего своей необычностью в тупик многих противников ГМО, стало возможным благодаря встрече израильского биолога Омри Амирав-Дрори (Omri Amirav-Drory) и Энтони Эванса (Antony Evans), предпринимателя с математическим бэкграундом, напитавшегося футуристическими идеями в Singularity University. Позднее к ним присоединился Кайл Тейлор (Kyle Taylor), специалист по генетике растений, получивший научную степень в Стенфорде. Оказавшись на одной из лекций, где Омри рассказывал о потенциале синтетической биологии, Эванс впервые услышал об идее кембриджских студентов. И, что называется, загорелся.
Рассчитывать на государственную или даже частную поддержку такого проекта не приходилось, поэтому Эванс, как человек из IT, решил обратиться к краудфандингу на сайте Kickstarter. Этот известный сайт позволяет, например, меломанам финансировать запись альбомов любимых групп, причем если нужную сумму собрать не удается, то неиспользованные деньги возвращаются пользователям.
О работе студентов писали популярные издания, а сами они уже мечтали освещать дороги при помощи лесополосы из светящихся тополей. Интересно, что даже «зеленая» пресса в тот момент отнеслась к такой фантастической идее благосклонно, рассматривая ее как способ сократить выброс углекислого газа. Но только до тех пор, пока «фантастика» не начала превращаться в реальность.
Эванс поставил целью собрать на создание светящегося растения полмиллиона долларов. Тем, кто перечислил на финансирование по 40 долларов, команда пообещала прислать семена будущего растения для самостоятельного выращивания, по 150 – само растение. Имена тех, кто готов расстаться с 10 тысячами, ученые собираются увековечить в геноме будущего растения (вообще, речь идет о любом послании длиной не более 30 знаков).
Проект вызвал у пользователей Kickstarter нешуточный интерес. За полтора месяца почти вся необходимая сумма была собрана, а те несколько тысяч, которых не хватило, Эванс пообещал добрать за счет продажи футболок и прочей атрибутики. При этом сами растения продаваться не будут – их получат только те, кто уже вложился в проект.
Будущим создателям светящегося растения удалось заручиться поддержкой нескольких известных людей и организаций, среди которых оказались основатель X Prize и Singularity University Петер Диамандис и легендарный генетик Джордж Черч.
В качестве объекта «подсвечивания» ученые выбрали любимое модельное растение генетиков – невзрачную резуховидку Таля Arabidopsis thaliana. Если с ним все пройдет успешно, то на следующем этапе биологи обещают заставить светиться розу.
Интересно, что никаких разрешений для работы «биохакерам», как прозвала их пресса, не требуется. Авторы проекта говорят, что по законам США светящиеся растения не подпадают под регулирование: они не предназначены для употребления в пищу ни для человека, ни для животных, а федеральное аграрное агентство APHIS (Animal and Plant Health Inspection Service) интересуется только способом внесения трансгенов. Если гены люциферазной системы будут внесены в растение методом, в котором не используются патогены (первоначально предполагалось использовать для этого условно патогенную Agrobacterium), APHIS не сможет вмешиваться в работу Эванса и его коллег.
Эванс и его сподвижники обещают выслать участникам проекта набор для самостоятельной трансформации растений, однако смогут ли они это сделать – остается большим вопросом. Бактерии, которые используются для такой простой домашней трансформации условно патогенны, поэтому их распространение может подпасть под законодательные ограничения.
Неудивительно, что такая свобода вызвала у некоторых «зеленых» бурю негодования. Создание светящихся растений они уже назвали лазейкой в законах США, которую «безответственные хакеры» могут использовать так, как им заблагорассудится. Статья, призывающая срочно залатать брешь в законах, появилась, помимо профильной экоактивистской прессы, в The Guardian. Активнее всего повела себя канадская организация ETC Group – она попыталась организовать общественную кампанию, призванную надавить на Kickstarter с целью не давать финансирование «биохакерам».
Сложно сказать, смогут ли Эванс с соратниками преодолеть сопротивление и в срок доставить семена энтузиастам, поддержавшим проект. Пока кажется, что у них на это гораздо больше шансов, чем у AquaBounty с их многострадальным лососем. Ведь «биохакерам», в отличие от AquaBounty, Monsanto и других биотехнологических компаний, придется бороться не с американской бюрократией в виде FDA, а с общественным мнением и экоактивистами, которые, к счастью или к сожалению, пока не столь могущественны.
|