Перефразируя знаменитую фразу, можно сказать что туманности это не только останки умирающий звезды, но и множество поразительных снимков поистине завораживающих своей красотой. И вправду, с появлением мощных наземных, так и орбитальных телескопов, мы смогли в подробностях изучить космические туманности, получить их детальные фотографии в разных спектрах и узнать какие процессы приводят к их появлению.
Когда-то туманностью называли все космические объекты, имевшие размытую, нечеткую форму. Под это определение подпадали также и целые галактики, которые невозможно было рассмотреть с помощью существовавших в то время телескопов. В настоящее время под термином «туманность» понимают совокупность межзвездного газа и пыли.
В зависимости от физических свойств, происхождения и местоположения, различают диффузные, отражательные, темные туманности, остатки сверхновых и планетарные туманности.
Диффузные туманности еще называют светящимися, потому что кажется, будто они излучают свет. На самом деле рядом с этими туманностями или в них находится горячая звезда с температурой поверхности 20-40 тысяч градусов по Цельсию. Межзвездный газ поглощает ультрафиолетовое излучение, а затем переизлучает его. Такие туманности обычно встречаются в областях активного звездообразования, то есть в рукавах спиральных галактик, и являются веществом, которое не вошло в состав новых звезд. Характерным примером диффузной туманности является Туманность Ориона.
Отражательными называют туманности, рядом с которыми расположена звезда с меньшей температурой поверхности, и звездная пыль может только отражать свет этой звезды. Такие туманности обычно встречаются рядом с формирующимися звездами.
Темные туманности, соответственно, не освещены никакими звездами и выделяются в космосе как черные пятна, несмотря на это они излучают сильное инфракрасное и радиоизлучение. Темные туманности состоят в основном из молекулярного водорода, хотя в них встречаются и другие молекулы. Концентрация газа в таких туманностях примерно в 100 раз выше частиц пыли. Температура колеблется от -260 до -220 градусов по Цельсию. Пример темной туманности – Большой Провал в созвездии Лебедь.
Остатками сверхновых называют туманности, которые образуются в результате взрыва старой звезды. Во время взрыва внешние слои звезды сбрасываются со скоростью примерно 10000 км/с. Летящие с огромной скоростью частицы оболочки сталкиваются с неподвижными частицами межзвездного газа, в результате этого вещество нагревается до сотен тысяч градусов, магнитное поле усиливается, появляется рентгеновское излучение. Остатками сверхновых является Крабовидная туманность.
Планетарные туманности являются простейшими разновидностями туманностей. Как и остатки сверхновых, планетарные туманности являются оболочками, сброшенными взорвавшейся звездой. Только в нашей Галактике их встречается около 20 тысяч. Внешне они похожи на планеты, так как выглядят как диски с размытыми очертаниями, но, в отличие от диффузных туманностей, они встречаются вне спиральных рукавов. Внутри планетарных туманностей расположены звезды.
Само слово туманность происходит с латинского «nebula», что означает «облако». По сути, это пылевое и газовое облако, обеспечивающее идеальные условия для звездного рождения или смерти. Эти небесные диковинки освещаются внутренними или соседними звездами.
Туманности вмещают удивительные скопления звезд, пыли и газа, которые часто влияют на их форму. Конечно, понадобится хороший телескоп, чтобы получить качественные снимки. Палитра красок проявляется лишь на длинных экспозициях, демонстрируя водород (розовый), гелий (синий), азот (красный) и кислород (сине-зеленый). Но туманность может быть и темной. Этот вид открыл Уильям Гершель, представив пылевые и газовые облака, лишенные освещения звезды, и слишком плотные, чтобы пропускать свет.
Туманность эмиссионных линий и эмиссионная туманность создают собственное свечение. Атомы водорода приходят в активность из-за мощного ультрафиолетового света звезд. Затем водород ионизируется (теряет электрон, излучающий фотон).
Звезды О-типа могут ионизировать газ в радиусе 350 световых лет. Туманность М17 обнаружил де Шезо в 1746 году, а в 1764 году ее заново открыл Шарль Мессье. Она находится в Стрельце и называется также туманностью Лебедя, Омега, Подкова и Лобстер. Невероятно яркая и ее розовое свечение можно заметить без использования техники в низких широтах (видимая величина – 6). Внутри находятся молодые звезды, создающие область HII. За красный цвет отвечает ионизированный водород. Инфракрасный свет помогает находить огромное количество пыли, намекающее на активное звездообразование. Внутри находится скопление из 30 звезд, затененных туманностью, протирающейся в диаметре на 40 световых лет. Общая масса в 800 раз превосходит солнечную. М17 удалена на 5500 световых лет. Вместе с М16 расположена в одном спиральном рукаве Млечного Пути (Стрельца-Киля).
Отражательная туманность наполнена водородом (наиболее распространенный элемент во Вселенной) и пылью. Она отражает свет, посылая его к звездам, которые содержит. Этот эффект можно проследить на синей туманности Плеяд.
Эмиссионные часто смешиваются с отражательными туманностями. В качестве примера можно привести М42 (Туманность Ориона). Светящийся газ окружает молодые звезды, расположенные на краю гигантского молекулярного облака, отдаленного от нас на 1500 световых лет. В центре заметны 4 синие звезды, формирующие трапецию и освещающие вещество в пространстве. Атомы поглощают звездный свет и переправляют уже в своем цвете. Радиоастрономические исследования показывают, что туманность Ориона является частью крупного и непрозрачного облака Ориона. Облачное сжатие появилось в трапециевидных звездах и группе протозвездных туманностей, которые находятся за туманностью Ориона. Это ближайшая к нам область формирования звезд.
Темная туманность – облако, наполненное пылью и холодным газом, не пропускающих видимый свет, из-за чего закрывает видимость на внутренние звезды. Средний диаметр пыли – 1мкм (0.001 мм). Это плотность сигаретного дыма. Мелкие частички собирают небольшое количество молекул.
Если диффузные (отражательные и эмиссионные) туманности связаны с появлением звезд, то планетарные – их остатки. Название «планетарная» взято еще с первых наблюдений за объектами, имеющих круговой аспект. В момент завершения существования, звезда начинает излучать сильные ультрафиолетовые вспышки. Свет освещает вытесненный газ, и мы видим планетарную туманность. Водород проявляется в красном свете, а кислород – зеленом.
Остатки сверхновых образуются, когда звезда завершает жизнь в массивном взрыве, известном как сверхновая звезда. Взрыв уносит большое количество вещества звезды в космос. Это облако материи пылает с остатками звезды, которая их породила. Одним из лучших примеров остатка сверхновой звезды является Крабовидная туманность (M1) в созвездии Тельца. Она освещено пульсаром, который был образован сверхновой звездой.
Список менее известных туманностей: Голова Ведьмы, Кошачья лапа, Крылья Бабочки, туманность Пламенеющей звезды, туманность Пузырь, туманность Тухлое яйцо, туманность Фантомный штрих, туманность Шлем Тора.
Туманность появляется, когда частички ISM подвергаются гравитационному коллапсу. Из-за обоюдного гравитационного влияния материя сближается и создает участки с большей плотностью. В центре могут формироваться звезды, чье ультрафиолетовое ионизирующее излучение делает так, что окружающий газ приобретает видимость на оптических длинах волн.
Большинство туманностей крупные, а их диаметр достигает сотни световых лет. Они плотнее окружающего пространства, но уступают вакууму, созданному в земной среде. Если бы существовала туманность, похожая на Землю, то ее масса достигала бы пары килограмм.
В древние времена люди замечали очень много астрономических объектов. Первое зарегистрированное наблюдение туманности произошло в 150 году н.э. В то время Птолемей обнаружил 5 звезд. В своей книге «Альмагест» он также отметил яркие области между Большой Медведицей и Львом, которые не связывались какой-нибудь наблюдаемой звездой.
Персидский астроном Абд аль-Рахман ас-Суфи в «Книге неподвижных звезд» (964 год н.э.) впервые зафиксировал туманность. Он говорил об облаке, где сейчас расположена Андромеда. Кроме того, он записал Омикрон Парусов и Скопление Брохчи.
4 июля 1054 года вспыхнула сверхновая, создавшая Крабовидную туманность (SN 1054). Китайские и арабские астрономы смогли разглядеть ее и зарегистрировать. Были свидетельства, что многие цивилизации замечали все эти объекты, но не оставили после себя записей.
В 17-м веке наблюдения стали еще доступнее благодаря появлению телескопов. Все началось в 1610 году, когда астроном из Франции Никола-Клод Фабри де Пейреск впервые зарегистрировал туманность Ориона. В 1618 году астроном из Швейцарии Иоганн Баптист Цизат также видел ее, после чего в 1659 году подключился Кристиан Гюйгенс.
Космическому телескопу Хаббл удалось максимально глубоко взглянуть на удивительное формирование. Крабовидная туманность взывает интерес у астрономов, потративших много времени на ее изучение. Это самый крупный снимок (наивысшее разрешение), созданный благодаря камере Хаббла WFPC2. Для комбинированного изображения использовали 24 отдельных кадра.
К 18 веку количество найденных туманностей начало увеличиваться, и астрономы поняли, что пришло время создавать списки. В 1715 году Эдмунд Галлей опубликовал список из туманностей Мессье 11, Мессье 13, Мессье 22, Мессье 31, Мессье 42 и глобулярного скопления Омега Центавра (NGC 5139).
В 1746 году Жан Филипп де Шезо предоставил 20 туманностей, включая 8 новых. Николя Луи де Лакайль (в 1751-1753 годах) категорировал 42 туманности, большая часть которых ранее нигде не упоминалась. И уже в 1781 году появляется известный каталог Шарля Мессье (101 объект), куда также вошли галактики и кометы.
Количество туманностей значительно пополнили Уильям Гершель и его сестра Кэролайн. В 1786 году выходит их публикация «Тысяча новых туманностей и звездных скоплений», которые дополнились вторым и третьем каталогом в 1786 и 1802 годах. Тогда Гершель полагал, что туманность представляет собою неразрешенное скопление звезд и он бы изменил мнение, если бы в 1790 году увидел туманность, окружающую далекую звезду.
С 1864 года Уильям Хаггинс начал разделять туманности, основываясь на их спектрах. 1/3 обладала спектром излучения газа (эмиссионные), а другие демонстрировали непрерывный спектр, согласующийся со звездной массой (планетарные).
Весто Слайфер в 1912 году добавил отражательные туманности, после того, как увидел скопление Плеяд. После дебатов в 1922 году стало понятно, что многие объекты, наблюдаемые ранее, были не туманностями, а далекими спиральными галактиками. Тогда же Эдвин Хаббл объявил, что практически все туманности связаны со звездами, обеспечивающих освещение. С тех пор количество росло, а классификация становилась более четкой.
Получается, что туманность – не только старт для звезды, но и финиш. И во всех звездных системах найдутся туманные облака и массы, ожидающие рождения нового звездного поколения. Туманности представляют собой облака газа и пыли, расположенные в галактике и выделяющиеся поглощением, излучением или отражением света на общем фоне неба. Они часто представляют собой очень эффектное зрелище, отчего их фотографии любят рассматривать, а некоторые – помещать в блогах. Кроме этого, они играют важную роль в изучении эволюции звезд и галактик в целом, поэтому их любят фотографировать.
Туманности в целом подразделяются на две группы – диффузные (светлые) и поглощающие (темные). Внешне они отличаются просто – диффузные туманности светятся, а темные, соответственно названию, – нет и даже наоборот, затемняют расположенные за ними участки неба.
Диффузные туманности – это три разнородных класса объектов: отражательные туманности, эмиссионные туманности и туманности, образованные при взрывах сверхновых звезд (остатки сверхновых, supernova remnants, SNR).
Отражательные туманности – это газопылевые облака, отражающие свет находящихся рядом с ними и подсвечивающих их звезд. Они состоят из газа и мелкой пыли, в основном, углеродной (в значительной степени образованной в оболочках сверхгигантов) с примесями других металлов, часто – железа и никеля, выброшенных старыми взрывами сверхновых, и имеют спектр и цвет, близкий к цвету и спектру освещающей их звезды (или звезд) с небольшими добавками. Правда, из-за того, что с уменьшением длины волны свет рассеивается более эффективно (именно по этой причине наше небо является голубым), цвет отражательных туманностей обычно является более синим, чем цвет освещающей звезды.
Эмиссионные туманности обладают собственным свечением. При этом зачастую отличие эмиссионных и отражательных туманностей заключается не в их природе, а в том, с какими звездами они соседствуют. Звезды ранних спектральных классов О и В излучают много высокоэнергетических фотонов, которые ионизируют газ туманности, а ионизированный газ переизлучает (эмитирует) видимый свет с большей длиной волны (вплоть до красного), который мы и видим. В результате одна и та же туманность, если рядом с ней находится, скажем, красный сверхгигант, не излучающий высокоэнергетических фотонов, будет видна как отражательная, а если голубой – как эмиссионная. Поэтому иногда наблюдаются туманности, часть которых, соседствующая со звездой раннего спектрального класса, является эмиссионной, а другая часть – отражательной.
Некогда, на заре времен, существовали своеобразные колоссальные эмиссионные туманности (облака Лайман-альфа), внутри которых образовывались не звезды, а галактики. Они давно сгинули, и нынче их существование можно заметить по наблюдениям леса Лайман-альфа.
Туманности, образованные при взрывах сверхновых звезд, состоят из материала самой взорвавшейся звезды и межзвездного газа и пыли, сжатых и нагретых на фронте ударной волны, распространяющейся после взрыва. Они наблюдаются в течение относительно короткого времени после взрыва (порядка десятков и сотен тысяч лет, пока не охлаждаются и не рассеиваются), имеют высокую температуру (порядка миллионов градусов) и, соответственно, обладают собственным свечением в широком спектре вплоть до рентгеновского. Такие туманности могут иметь сложную и причудливую форму, определяемую начальной динамикой взрыва и взаимодействием ионизированных продуктов взрыва с магнитным полем и ранее сброшенным веществом.
Существуют также так называемые планетарные туманности, к планетам отношения не имеющие и являющиеся сброшенными оболочками звезд на последних этапах их жизни.
Темные туманности свет только поглощают и рассеивают. Они содержат в себе большое количество пыли, препятствующей прохождению фотонов. В результате расположенные за ними источники излучения выглядят более красными, чем на самом деле (опять же, потому что синий свет лучше рассеивается, а красный – лучше пропускается, именно поэтому Солнце на рассвете или закате выглядит красным). При большом количестве пыли они вообще не пропускают свет.
В таких туманностях обычно интенсивно рождаются новые звезды. Как правило, темные туманности весьма велики (так называемые гигантские молекулярные облака), хотя встречаются компактные темные туманности, называемые глобулами Бока.
Часто различие между темными, эмиссионными и отражательными туманностями является случайным. Одна и та же туманность может быть темной, если рядом с ней нет ярких звезд, отражательной, если рядом с ней есть яркие звезды поздних спектральных классов (желтые и красные сверхгиганты) и эмиссионной, если она подсвечивается яркой звездой ранних спектральных классов О или В.
Раньше астрономы называли так любые небесные объекты, неподвижные относительно звезд, имеющие, в отличие от них, диффузный, размытый вид, как у маленького облачка (употребляемый в астрономии для «туманности» латинский термин nebula означает «облако»). Со временем выяснилось, что некоторые из них, например, туманность в Орионе, состоят из межзвездного газа и пыли и принадлежат нашей Галактике. Другие, «белые» туманности, как в Андромеде и в Треугольнике, оказались гигантскими звездными системами, подобными Галактике. Здесь речь пойдет о газовых туманностях.
До середины 19 века астрономы считали, что все туманности – это далекие скопления звезд. Но в 1860, впервые использовав спектроскоп, У.Хёггинс показал, что некоторые туманности газовые. Когда сквозь спектроскоп проходит свет обычной звезды, наблюдается непрерывный спектр, в котором представлены все цвета от фиолетового до красного; в некоторых местах спектра звезды имеются узкие темные линии поглощения, но заметить их довольно трудно – они видны лишь на качественных фотографиях спектров. Поэтому при наблюдении глазом спектр звездного скопления выглядит как непрерывная цветная полоса. Спектр излучения разреженного газа, напротив, состоит из отдельных ярких линий, между которыми практически нет света. Как раз это и увидел Хёггинс при наблюдении некоторых туманностей через спектроскоп. Более поздние наблюдения подтвердили, что многие туманности действительно являются облаками горячего газа. Часто астрономы называют «туманностями» и темные диффузные объекты – тоже облака межзвездного газа, но холодные.
Типы туманностей
Туманности разделяют на следующие основные типы: диффузные туманности, или области H II, такие, как Туманность Ориона; отражательные туманности, как туманность Меропы в Плеядах; темные туманности, как Угольный Мешок, которые обычно связаны с молекулярными облаками; остатки сверхновых, как туманность Сеть в Лебеде; планетарные туманности, как Кольцо в Лире.
Диффузные туманности
Широко известные примеры диффузных туманностей – это Туманность Ориона на зимнем небе, а также Лагуна и Тройная (Трехраздельная) – на летнем. Темные линии, рассекающие Тройную туманность на части, – это холодные пылевые облака, лежащие перед ней. Расстояние до этой туманности ок. 2200 св. лет, а ее диаметр чуть менее 2 св. лет. Масса этой туманности в 100 раз больше солнечной. Некоторые диффузные туманности, например Лагуна 30 Золотой Рыбы и Туманность Ориона, значительно крупнее и массивнее. В отличие от звезд газовые туманности не имеют собственного источника энергии; они светятся только в том случае, если внутри них или рядом находятся горячие звезды с температурой поверхности 20000-40000оС. Эти звезды испускают ультрафиолетовое излучение, которое поглощается газом туманности и переизлучается им в форме видимого света. Пропущенный через спектроскоп, этот свет расщепляется на характерные линии излучения различных элементов газа.
Отражательные туманности
Отражательная туманность образуется, когда облако с рассеивающими свет пылинками освещается расположенной рядом звездой, температура которой не так высока, чтобы заставить светиться газ. Небольшие отражательные туманности иногда видны рядом с формирующимися звездами.
Темные туманности
Темные туманности – это облака, состоящие в основном из газа и отчасти из пыли (в соотношении по массе ~ 100:1). В оптическом диапазоне они закрывают от нас центр Галактики и видны как черные пятна вдоль всего Млечного Пути, например, Большой Провал в Лебеде. Но в инфракрасном и радиодиапазонах эти туманности излучают довольно активно. В некоторых из них сейчас формируются звезды. Плотность газа в них значительно выше, чем в межоблачном пространстве, а температура ниже, от 260 до 220 оС. В основном они состоят из молекулярного водорода, но обнаружены в них и другие молекулы вплоть до молекул аминокислот.
Остатки сверхновых
Когда состарившаяся звезда взрывается, ее внешние слои сбрасываются со скоростью ок. 10000 км/с. Это быстро летящее вещество, подобно бульдозеру, сгребает перед собой межзвездный газ, и вместе они образуют структуру, подобную туманности Сеть в Лебеде. При столкновении движущееся и неподвижное вещества нагреваются в мощной ударной волне и светятся без дополнительных источников энергии. Температура газа при этом достигает сотен тысяч градусов, и он становится источником рентгеновского излучения. Кроме того, в ударной волне усиливается межзвездное магнитное поле, а заряженные частицы – протоны и электроны – ускоряются до энергий гораздо выше энергии теплового движения. Движение этих быстрых заряженных частиц в магнитном поле вызывает излучение в радиодиапазоне, называемое нетепловым. Самый интересный остаток сверхновой – это Крабовидная туманность. В ней выброшенный сверхновой газ еще не смешался с межзвездным веществом.
В 1054 была видна вспышка звезды в созвездии Тельца. Восстановленная по китайским летописям картина вспышки показывает, что это был взрыв сверхновой звезды, которая в максимуме достигла светимости в 100 миллионов раз выше солнечной. Крабовидная туманность находится как раз на месте той вспышки. Измерив угловые размер и скорость расширения туманности и поделив одно на другое, рассчитали, когда это расширение началось, – почти точно получился 1054 год. Сомнений нет: Крабовидная туманность – остаток сверхновой. В спектре этой туманности каждая линия раздвоена. Ясно, что один компонент линии, сдвинутый в голубую сторону, приходит от приближающейся к нам части оболочки, а другой, сдвинутый в красную сторону, – от удаляющейся. По формуле Доплера вычислили скорость расширения (1200 км/с) и, сравнив ее со скоростью углового расширения, определили расстояние до Крабовидной туманности: ок. 3300 св. лет.
Крабовидная туманность имеет сложное строение: ее внешняя волокнистая часть излучает отдельные эмиссионные линии, характерные для горячего газа; внутри этой оболочки заключено аморфное тело, излучение которого имеет непрерывный спектр и сильно поляризовано. Кроме того, оттуда исходит мощное нетепловое радиоизлучение. Это можно объяснить только тем, что внутри туманности быстрые электроны движутся в магнитном поле, испуская при этом синхротронное излучение в широком диапазоне спектра – от радио до рентгеновского. Долгие годы загадочным оставался источник быстрых электронов в Крабовидной туманности, пока в 1968 не удалось обнаружить в ее центре быстро вращающуюся нейтронную звезду – пульсар, остаток взорвавшейся примерно 950 лет назад массивной звезды. Совершая 30 оборотов в секунду и обладая огромным магнитным полем, нейтронная звезда выбрасывает в окружающую туманность потоки быстрых электронов, ответственных за наблюдаемое излучение.
Оказалось, что механизм синхротронного излучения весьма распространен среди активных астрономических объектов. В нашей Галактике можно указать немало остатков сверхновых, излучающих в результате движения электронов в магнитном поле, например, мощный радиоисточник Кассиопея А, с которым в оптическом диапазоне связана расширяющаяся волокнистая оболочка. Из ядра гигантской эллиптической галактики М 87 выбрасывается тонкая струя горячей плазмы с магнитным полем, излучающая во всех диапазонах спектра. Неясно, связаны ли активные процессы в ядрах радиогалактик и квазаров со сверхновыми, но физические процессы излучения в них весьма схожи.
Простейшие галактические туманности – это планетарные. Их открыто около двух тысяч, а всего в Галактике их ок. 20000. Они концентрируются в галактическом диске, но не тяготеют, как диффузные туманности, к спиральным рукавам. При наблюдении в небольшой телескоп планетарные туманности выглядят размытыми дисками без особых деталей и поэтому напоминают планеты. У многих из них вблизи центра видна голубая горячая звезда; типичный пример – туманность Кольцо в Лире. Как и у диффузных туманностей, источником их свечения служит ультрафиолетовое излучение звезды, находящейся внутри.
Чтобы проанализировать спектральный состав излучения туманности, часто используют бесщелевой спектрограф. В простейшем случае вблизи фокуса телескопа помещают вогнутую линзу, превращающую сходящийся пучок света в параллельный. Его направляют на призму или дифракционную решетку, расщепляющую пучок в спектр, а затем выпуклой линзой фокусируют свет на фотопластинке, получая при этом не одно изображение объекта, а несколько – по числу линий излучения в его спектре. Однако изображение центральной звезды при этом растягивается в линию, поскольку у нее непрерывный спектр.
В спектрах газовых туманностей представлены линии всех важнейших элементов: водорода, гелия, азота, кислорода, неона, серы и аргона. Причем, как и везде во Вселенной, водорода и гелия оказывается гораздо больше остальных. Возбуждение атомов водорода и гелия в туманности происходит не так, как в лабораторной газоразрядной трубке, где поток быстрых электронов, бомбардируя атомы, переводит их в более высокое энергетическое состояние, после чего атом возвращается в нормальное состояние, излучая свет. В туманности нет таких энергичных электронов, которые могли бы своим ударом возбудить атом, т.е. «забросить» его электроны на более высокие орбиты. В туманности происходит «фотоионизация» атомов ультрафиолетовым излучением центральной звезды, т.е. энергии пришедшего кванта достаточно, чтобы вообще оторвать электрон от атома и пустить его в «свободный полет». В среднем проходит 10 лет, пока свободный электрон встретится с ионом, и они вновь объединятся (рекомбинируют) в нейтральный атом, выделив энергию связи в виде квантов света. Рекомбинационные линии излучения наблюдаются в радио-, оптическом и инфракрасном диапазонах спектра.
Наиболее сильные линии излучения у планетарных туманностей принадлежат атомам кислорода, потерявшим один или два электрона, а также азоту, аргону, сере и неону. Причем они излучают такие линии, которые никогда не наблюдаются в их лабораторных спектрах, а появляются только в условиях, характерных для туманностей. Эти линии называют «запрещенными». Дело в том, что атом обычно находится в возбужденном состоянии менее миллионной доли секунды, а затем переходит в нормальное состояние, излучая квант. Однако существуют некоторые уровни энергии, между которыми атом совершает переходы очень «неохотно», оставаясь в возбужденном состоянии секунды, минуты и даже часы. За это время в условиях относительно плотного лабораторного газа атом обязательно сталкивается со свободным электроном, который изменяет его энергию, и переход исключается. Но в крайне разреженной туманности возбужденный атом долго не сталкивается с другими частицами, и, наконец, совершается «запрещенный» переход. Именно поэтому впервые обнаружили запрещенные линии не физики в лабораториях, а астрономы, наблюдая туманности. Поскольку в лабораторных спектрах этих линий не было, некоторое время даже считалось, что они принадлежат неизвестному на Земле элементу. Его хотели назвать «небулий», но недоразумение вскоре прояснилось. Эти линии видны в спектрах как планетарных, так и диффузных туманностей. В спектрах таких туманностей есть и слабое непрерывное излучение, возникающее при рекомбинации электронов с ионами.
На спектрограммах туманностей, полученных со щелевым спектрографом, линии часто выглядят изломанными и расщепленными. Это – эффект Доплера, указывающий на относительное движение частей туманности. Планетарные туманности обычно расширяются радиально от центральной звезды со скоростью 20-40 км/с. Оболочки сверхновых расширяются гораздо быстрее, возбуждая перед собой ударную волну. У диффузных туманностей вместо общего расширения обычно наблюдается турбулентное (хаотическое) движение отдельных частей.
Важная особенность некоторых планетарных туманностей – стратификация их монохроматического излучения. Например, излучение однократно ионизованного атомарного кислорода (потерявшего один электрон) наблюдается в обширной области, на большом расстоянии от центральной звезды, а двукратно ионизованные (т.е. потерявшие два электрона) кислород и неон видны лишь во внутренней части туманности, тогда как четырехкратно ионизованный неон или кислород заметны лишь в центральной ее части. Этот факт объясняется тем, что необходимые для более сильной ионизации атомов энергичные фотоны не достигают внешних областей туманности, а поглощаются газом уже недалеко от звезды.
По химическому составу планетарные туманности весьма разнообразны: элементы, синтезированные в недрах звезды, у некоторых из них оказались подмешанными к веществу сброшенной оболочки, а у других – нет. Еще сложнее состав остатков сверхновых: сброшенное звездой вещество в значительной степени смешано с межзвездным газом и, кроме того, разные фрагменты одного остатка иногда имеют различный химический состав (как у Кассиопеи А). Вероятно, это вещество выбрасывается с различных глубин звезды, что дает возможность проверять теорию эволюции звезд и взрыва сверхновых.
Диффузные и планетарные туманности имеют совершенно разное происхождение. Диффузные всегда находятся в областях звездообразования – как правило, в спиральных рукавах галактик. Обычно они связаны с крупными и холодными газопылевыми облаками, в которых формируются звезды. Яркая диффузная туманность – это небольшой кусочек такого облака, разогретый родившейся поблизости горячей массивной звездой. Поскольку такие звезды формируются нечасто, диффузные туманности далеко не всегда сопровождают холодные облака. Например, в Орионе есть такие звезды, поэтому есть несколько диффузных туманностей, но они крошечные по сравнению с невидимым для глаза темным облаком, занимающим почти все созвездие Ориона. В небольшой области звездообразования в Тельце нет ярких горячих звезд, и поэтому нет заметных диффузных туманностей (есть лишь несколько слабых туманностей вблизи активных молодых звезд типа Т Тельца).
Планетарные туманности – это оболочки, сброшенные звездами на заключительном этапе их эволюции. Нормальная звезда светит за счет протекающих в ее ядре термоядерных реакций, превращающих водород в гелий. Но когда запасы водорода в ядре звезды истощаются, с ней происходят быстрые перемены: гелиевое ядро сжимается, оболочка расширяется, и звезда превращается в красный гигант. Обычно это переменные звезды типа Миры Кита или OH/IR с огромными пульсирующими оболочками. В конце концов они сбрасывают внешние части своих оболочек. Лишенная оболочки внутренняя часть звезды имеет очень высокую температуру, иногда выше 100000 оC. Она постепенно сжимается и превращается в белый карлик, лишенный ядерного источника энергии и медленно остывающий. Таким образом, планетарные туманности выбрасываются их центральными звездами, тогда как диффузные туманности типа Туманности Ориона – это вещество, которое осталось неиспользованным в процессе формирования звезд.
Знаете ли вы, что во Вселенной есть туманности в виде конской головы, орла, совы и даже слоновьих хоботов? Далекие загадочные космические объекты дают волю нашему воображению. Недавно ученые разглядели туманность, которая удивительным образом похожа на ламантина – морскую корову, парящую в космическом пространстве, как в океане.
Изображение сверхновой звезды, вернее, ее остатков, которым около 20 тысяч лет, позволило исследователям с помощью радиотелескопов VLA в штате Нью-Мексико (США) узнать много интересного из истории гигантского облака, которое по форме напоминает редкое животное – флоридского ламантина.
W50 – одна из самых крупных туманностей, остатков сверхновой, которую когда-либо наблюдали с помощью телескопов VLA. Туманность имеет ширину – 700 световых лет и покрывает около 2 градусов на небе, то есть ее ширину можно сравнить с шириной 4 полных лун. Огромное облако W50 образовалось, когда гигантская звезда в созвездии Орла, расположенная на расстоянии 18 тысяч световых лет от нас, взорвалась, превратившись в сверхновую. Это произошло примерно 20 тысяч лет назад. Звезда выпустила облако газа в окружающее пространство космоса.
Сходство с плавающим ламантином очевидно, если сравнить два изображения. Остатки гигантской звезды, которая, вероятно, превратилась в черную дыру, питаются газами соседней звезды-компаньона. Газ собирается на диске вокруг черной дыры. Туманность W50 нельзя увидеть невооруженным глазом. Своим названием она обязана 50-му источнику радиоизлучения, который занесен в каталог Вестерхаута, составленный в 1958 году. Когда новый снимок W50 был доставлен в офис начальника обсерватории, ассистентка директора Хейди Уинтер заметила сходство туманности с ламантином, животным, которое сегодня находится на грани исчезновения. Его часто называют морской коровой. Ламантины водятся в теплых водах у юго-восточного побережья США.
На кого похожи космические туманности и галактики? Оптически яркие астрономические объекты, которые можно увидеть невооруженным глазом или с помощью телескопа часто получают забавные названия на основе их сходства с каким-либо земным предметом или объектом. Возьмем, к примеру, галактику Водоворот. Эта спиральная галактика с почти симметричными рукавами спирали имеет практически идеальную форму воронки, отсюда и название.
Крабовидная туманность расположена в созвездии Тельца и является остатками сверхновой звезды SN 1054, которую наблюдали в 1054 году арабские астрономы. То, что мы видим сегодня, находится на расстоянии 6500 световых лет от нас. Эта туманность получила название благодаря рисунку Уильяма Парсонса, астронома, который наблюдал ее с помощью телескопа в 1844 году. Парсонcу показалось, что она напоминает краба.
Туманность Сову можно заметить в районе созвездия Большая Медведица. Она находится на расстоянии примерно 2300 световых лет от Земли. Туманность образовалась около 6 тысяч лет назад, а название получила благодаря лорду Россу, который в 1848 году нарисовал очертания туманности и увидел ее сходство с совой.
Слоновьи хоботы или Столпы творения – любопытная часть туманности Орла, которая расположена от нас расстоянии 7 тысяч световых лет от Земли. Примерно 6 тысяч лет назад в этой туманности произошел взрыв сверхновой, который уничтожил столпы, но нам они будут видны еще около тысячи лет. Вот такое интересное свойство имеют расстояния.
Туманность Тарантул в созвездии Золотая рыба представлялась астрономам похожей на паука тарантула. Туманность расположена в Большом Магеллановом Облаке – карликовой галактике, спутнике Млечного пути. Эта туманность приобрела такие формы благодаря взрывам сверхновых.
Туманность Муравей в созвездии Наугольник состоит из яркого ядра и четырех потоков, направленных в разные стороны, отчего очертания туманности делаются поразительным образом похожими на муравья.
В созвездии Дракона можно обнаружить любопытную туманность под названием Кошачий глаз. Структура этой туманности делает ее одной из самых сложных. Снимки показывают, что в этой области было множество взрывов и выбросов. Расстояние до этой туманности примерно 3300 световых лет.
Созвездие Скорпион приютило очень красивую туманность Бабочку, которая также называется туманность NGC 6302. Внешний вид туманности напоминает распахнутые крылья бабочки, отсюда и название. В центре туманности расположена звезда белый карлик.
Туманность IC5070 чем-то напоминает птицу с длинным клювом – пеликана, который затаился в космическом пространстве в районе созвездия Лебедь. Очертания пеликана можно заметить рядом с самой яркой звездой созвездия Лебедь – Денебом.
Планетарная туманность Красный паук в созвездии Стрельца имеет центр и 4 потока, направленные в разные стороны, чем сильно напоминает сидящего на паутине паука. Точное расстояние до этого объекта точно не известно, но астрономы предполагают, что более 5 тысяч световых лет.
Самая молодая из известных ученым туманностей – туманность Скат расположена в созвездии Жертвенника. Эта туманность была обнаружена пару десятилетий назад, так как до этого наблюдать ее не представлялось возможным из-за того, что газу не хватало нагрева для свечения. В центре туманности имеется белый карлик, а рядом с ним гораздо позже заметили компаньона.
В созвездии Ориона расположена, пожалуй, самая знаменитая туманность Конская голова, которая в диаметре составляет всего 3,5 световых года. Эта туманность находится на расстоянии 1500 световых лет от Земли и является частью Облака Ориона.
10 наиболее уникальных туманностей
Туманность Улитка
В созвездии Водолея прекрасно видна с Земли. Она расположена от нас очень близко по космическим меркам, на расстоянии лишь 700 световых лет. Это ещё одна планетарная туманность с белым карликом в центре.
Крабовидная туманность
Стала первым номером в списке космических объектов, составленного французским астрономом XVIII века Шарля Мессье. Но он не знал, что эта туманность – остаток взрыва сверхновой, который наблюдали китайские астрономы в 1054 году н.э. Внутри неё находится пульсар, бешено вращающаяся молодая нейтронная звезда.
Туманность Эскимос
Яркое и постоянно расширяющееся облако газа в созвездии Близнецы. Она принадлежит к планетарным туманностям – поскольку окружающий её диск напоминает планеты нашей солнечной системы, а звезда внутри сродни Солнцу. Возможно, смерть нашей системы через миллиарды лет будет выглядеть именно так.
Туманность Лагуна
Звёздоформирующая туманность в созвездии Стрельца, расположенная от нас на расстоянии около 5 тысяч световых лет. Её даже можно разглядеть невооружённым глазом, хотя многие подобные объекты скрыты от нас межзвёздной пылью. Лагуна простирается на 50 световых лет и принадлежит к типу эмиссионных, т.е. состоящих из плазмы туманностей.
Туманность Тарантул
Один из самых впечатляющих объектов, которые можно наблюдать из южного полушария. Тарантул – эмиссионная звёздоформирующая туманность, расположенная в созвездии Золотой Рыбы галактики Большого Магелланова Облака. Её размеры просто потрясают. Если бы она находилась от Земли на расстоянии туманности Улитки, то закрывала бы полнеба, от зенита до горизонта.
Туманность Сова
Небольшая планетарная туманность в созвездии Большая Медведица. Вообще большая часть туманностей называется по каталогу Мессье или Новому общему каталогу – NGS, лишь немногим дают запоминающиеся имена. Туманность Сова получила своё из-за отдалённой схожести с головой совы – призрачный овал с двумя пятнами-глазами.
Тройная туманность
Абсолютно неподражаема. Она состоит из трёх основных типов туманностей – эмиссионной, розового цвета, отражающей, голубого цвета и поглощающей, чёрного цвета. Внутри неё находится множество «зародышей» звёзд. Вероятнее всего наша солнечная система родилась из похожего объекта.
Туманность Кошачий Глаз
Находится в созвездии Дракона, и обладает одной из самых сложных структур известных нам космических объектов. На снимках «Хаббла» и «Спитцера» видно, что она закручивается в спираль со множеством сплетений. Причины этого пока неясны.
Туманность Орёл
Подарила человечеству один из самых впечатляющих астрономических снимков – «Столпы творения», область зарождения новых звёзд. По данным телескопа «Спитцер» эта область была уничтожена взрывом сверхновой около 6 тысяч лет назад. Но Орёл находится на расстоянии 7 тысяч световых лет от Земли – и ещё тысячу лет мы сможем любоваться «Столпами».
Туманность Ориона
Ярчайшая эмиссионная туманность, хорошо различимая на ночном небе невооружённым глазом почти из любой точки Земли и потому получившая огромную известность. Она находится чуть ниже Пояса Ориона, на расстоянии около 1300 световых лет от Земли и простирается на 33 световых года.
Не считая чисто эстетической пользы, туманности выполняют важнейшую функцию – они наполнены тяжёлыми элементами, стимулирующими цикл жизни звёзд. В этом списке не только самые красивые, но и наиболее удивительные примеры туманностей.
|