
Чего только не сотворили ученые и исследователи во благо науки. Какие только безумные эксперименты они не ставили, чтобы открыть что-то новое. Все это сейчас может вызывать улыбку или, наоборот, недоумение из-за странности происходившего, но тогда это было действительно важно, а о том, что это будет странно, никто и не догадывался. Тем не менее многим из таких экспериментов мы обязаны тем, что сейчас у нас есть.
В этой статье вам предлагается подборка самых странных, необычных, крутых и очень важных исследований, которые когда-либо проводились. Возможно, они привели к открытию того, чем вы пользуетесь в обычной жизни.
Даже мы, простые люди, каждый день ставим эксперименты, результат которых влияет на нашу жизнь. Например, что будет, если погреть котлеты в микроволновке не 40, а 50 секунд? Или что будет, если поехать домой не так, а вот так, будет ли это быстрее? Как не странно, это тоже эксперименты, которые помогают нам понять мир. Примерно тем же занимаются ученые.
Самые удачные эксперименты меняют многое и остаются в истории. Можно сказать, что это нерукотворный памятник нашему пытливому уму и стремлению человечества двигаться вперед и покорять новые научные вершины.
Периодически таблица Менделеева
Дмитрий Менделеев на протяжении длительного времени пытался провести классификацию химических элементов. Пока не понял, что их надо каким либо образом систематизировать. Эксперимент Менделеева с размещением химических элементов в таблицу, привёл к прогрессу в систематизации и обеспечил удобство и логику в изучении химии.
Закон свободного падения и телескоп Галилея
Всем известен эксперимент Галилео Галилея с двумя предметами разного веса, которые он сбросил с Пизанской башни. Этим он на практике доказал, что скорость падения не зависит от массы тела и опроверг теорию Аристотеля о том, что скорость падения пропорциональна его массе. Второй его эксперимент более значим для изучения космических объектов для будущих поколений. Изобретенный Галилеем телескоп, позволил не только наблюдать за небесными телами, но и изучать их. С его помощью он сделал великие открытия для своего времени, которые не были по достоинству оценены. Зато сейчас с помощью усовершенствованного телескопа учёные могут заглянуть в самые отдалённые уголки космоса.
Музыкальный интервал Пифагора
Заходя в кузницу, древний математик Пифагор пробовал ударять разными по размеру молотками. Таким образом, он пришёл к выводу, что звук прямо пропорционален размеру молотка. Из этого сделал правильный вывод, что в музыкальной основе лежит математика. Это привело к восприятию соотношения звуков по высоте в математическом смысле и простоте записи звукоряда.
Цветы Дарвина
Мало кто знает об экспериментах Дарвина после того, как он вернулся в Англию. Некоторые из них были сосредоточены на орхидеях. В процессе выращивания и изучения нескольких видов орхидей, он понял, что сложные цветки орхидей – это адаптация, позволяющая цветам привлекать насекомых, которые затем переносят пыльцу на соседние растения. Каждое насекомое специально предназначено для опыления одного типа орхидеи. Взять, к примеру, орхидею Вифлеемская звезда (Angraecum sesquipedale), нектар в которой хранится на глубине 30 сантиметров. Дарвин предугадал, что обязательно должно быть насекомое, которое опыляет этот вид орхидеи. Конечно, в 1903 году, ученые открыли вид под названием сумеречная бабочка, обладающая длинным хоботком, который может дотянуться до нектара этого вида орхидеи. Дарвин использовал данные, которые он собрал об орхидеях и их насекомых опылителях для укрепления своей теории естественного отбора. Он утверждал, что перекрестно опыляемые орхидеи более жизнеспособны, чем самоопыляемые, поскольку самоопыление снижает генетическое разнообразие, что, в конечном итоге, оказывает прямое воздействие на выживаемость вида. Так, три года спустя, после того, как он впервые описал естественный отбор в "О происхождении видов", Дарвин провел еще несколько экспериментов на цветах и укрепил свои утверждения о рамках эволюции.
Расшифровка ДНК
Джеймс Уотсон (James Watson) и Фрэнсис Крик (Francis Crick) подошли очень близко к расшифровке ДНК, но их открытия в значительной степени зависят от работ Альфреда Херши (Alfred Hershey) и Марты Чейз (Martha Chase). Они в 1952 году провели известный по сей день эксперимент, который помог им определить как молекулы ДНК связаны с наследственностью. Херши и Чейз работали с типом вируса, известного как бактериофаг. Этот вирус, состоящий из белковой оболочки, окружает нить ДНК, заражает бактериальную клетку, что программирует ее на производство новых зараженных клеток. Затем вирус убивает клетку и на свет появляются новые вирусы. Херши и Чейз знали об этом, но, при этом, они не знали, какой компонент – белок или ДНК – был ответственен за происходящее. Они не знали это до проведения своего гениального "блендер" эксперимента, который вывел их на ДНК рибонуклеиновые кислоты. После эксперимента Херши и Чейз многие ученые, такие как Розалинд Франклин (Rosalind Franklin) сосредоточились на изучении ДНК и его молекулярную структуру. Франклин использовал технику, называемую рентгеновской дифракцией для изучения ДНК. Она подразумевает "вторжение" Х-лучей в волокна очищенной ДНК. При взаимодействии лучей с молекулой, они "сбиваются" с первоначального курса и становятся дифрагированными. Далее дифрагированные лучи образуют картинку уникальной молекулы, готовой для анализа. Знаменитая фотография Франклина показывает Х-образную кривую, которую Уотсон и Крик обозначили как "подпись молекулы ДНК". Они смогли также определить ширину спирали, глядя на изображение Франклина.
Первая вакцинация
До полной глобальной ликвидации оспы в конце 20 века, это заболевание представляло собой серьезную проблему. В 18 веке, заболевание вызванное вирусом оспы, убивало каждого десятого ребенка, родившегося в Швеции и Франции. "Поимка" вируса было единственной возможностью «лечения». Это привело к тому, что люди сами пытались поймать вирус из гнойных язв. К сожалению, многие из них умерли при опасной попытке самостоятельной прививки. Эдвард Дженнер (Edward Jenner), британский врач, начал изучать вирус и разрабатывать эффективные методы лечения. Генезисом его экспериментов стало наблюдение того, что доярки, проживающие в его родном городе, часто заражались вирусом коровьей оспы, несмертельным заболеванием, похожим на обычную оспу. Доярки, которые заражались коровьей оспой, казалось, были защищены от инфекции оспы, поэтому в 1796 году Дженнер решил проверить, может ли человек развить иммунитет к обычной оспе, если его заразить вирусом коровьей оспы. Мальчика, над которым Дженнер решил провести свой эксперимент, звали Джеймс Фиппс (James Phipps). Дженнер сделал надрез на руке Фиппса и заразил его коровьей оспой. Через некоторое время мальчик выздоровел. 48 дней спустя доктор ввел в его организм вирус обычной оспы и обнаружил у мальчика иммунитет. Сегодня ученые знают, что вирусы коровьей и обычной оспы настолько похожи, что иммунная система человека не в состоянии их отличить.
Доказательство существования атомного ядра
Физик Эрнест Резерфорд (Ernest Rutherford) уже выиграл Нобелевскую премию в 1908 году за свои радиоактивные работы, при этом в тот период времени он также начал проводить эксперименты по выявлении структуры атома. Эксперименты были основаны на его предыдущих исследованиях, которые показали, что радиоактивность состоит из двух типов лучей – альфа и бета. Резерфорд и Ганс Гейгер (Hans Geiger) установили, что альфа-лучи – это потоки положительно заряженных частиц. Когда он выпускал альфа-частицы на экран, они создавали четкое и резкое изображение. Но если между источником альфа-излучения и экраном располагался тонкий лист из слюды, то полученное изображение было размытым. Было ясно, что слюда рассеивала некоторые альфа-частицы, но как и почему это происходило, на тот момент не было понятно. В 1911 году, физик расположил тонкий лист золотой фольги между источником альфа-излучения и экраном, толщиной 1-2 атома. Также он разместил еще один экран перед источником альфа-излучения для того, чтобы понять какие из частиц отклоняются назад. На экране позади фольги, Резерфорд наблюдал диффузную картину, аналогичную той, какую он видел при использовании листа из слюды. Увиденное на экране перед фольгой очень удивило Резерфорда, поскольку несколько альфа-частиц отскочили прямо назад. Резерфорд заключил, что сильный положительный заряд, находящийся в сердце атомов золота, отправил альфа-частицы обратно к источнику. Он назвал этот сильный положительный заряд "ядром", и заявил, что по сравнению с общим размером атома, его ядро должно быть очень мало, в противном случае назад бы вернулось гораздо большее количество частиц. Сегодня ученые аналогично Резерфорду визуализируют атомы: маленькие, положительно заряженные ядра в окружении большого, в основном пустого пространства, в котором обитает несколько электронов.
Рентгеновская кристаллография
Мы уже говорили выше о рентгеновской дифракции исследований Франклина, но проделанной работой он многим обязан Дороти Кроуфут Ходжкин (Dorothy Crowfoot Hodgkin), одной из трех женщин, которым удалось выиграть Нобелевскую премию по химии. В 1945 году Ходжкин считалась одной из ведущих специалистов мира, практикующих методы рентгеновской дифракции, поэтому не удивительно, что именно она, в конце концов, показала структуру одного из важнейших на сегодняшний день химических веществ в медицине – пенициллина. Александр Флеминг обнаружил убивающее бактерии вещество еще в 1928 году, но ученым потребовалось еще некоторый период времени для того, чтобы очистить вещество в целях разработки эффективного лечения. Таким образом, при помощи атомов пенициллина Ходжкин удалось создать полусинтетические производные пенициллина, что оказалось революцией в борьбе с инфекциями. Исследования Ходжкин стали известными как рентгеновская кристаллография. Химики впервые кристаллизировали соединения, которые они хотели проанализировать. Это был вызов. После того, как испытания кристаллов пенициллина провели две разные компании, Ходжкин пустила рентгеновские волны через кристаллы и позволила радиации «проникнуть в исследуемый объект». При взаимодействии Х-лучей с электронами исследуемого объекта, лучи становились немного дифрагированными. Это привело к появлению четкого рисунка из точек на фотопленке. Проанализировав положение и яркость этих точек и выполнив множество расчетов, Ходжкин точно определила, как располагаются атомы в молекуле пенициллина. Несколько лет спустя она использовала эту же технологию при выявлении структуры витамина В12. Она получила Нобелевскую премию по химии в 1964 году, честь, которой не удостоилась больше ни одна другая женщина.
Возникновение жизни
В 1929 году биохимики Джон Холдейн (John Haldane) и Александр Опарин независимо друг от друга предположили, что в ранней атмосфере Земли отсутствовал свободный кислород. В тех суровых условиях, они предположили, органические соединения могли формироваться из простых молекул, получая серьезный заряд энергии, будь то ультрафиолетовое излучение или яркий свет. Холдейн также добавил, что океаны, вероятно, были первыми источниками этих органических соединений. Американские химики Гарольд Юри (Harold Urey) и Стэнли Миллер (Stanley Miller) решили проверить гипотезы Опарина и Холдейна в 1953 году. Им удалось воссоздать раннюю атмосферу Земли путем тщательной работы над контролируемой, закрытой системой. Роль океана играла колба с нагретой водой. После того, как водяной пар поднимался и собирался в другой емкости, Юрии и Миллер добавляли водород, метан и аммиак для того, чтобы сымитировать безкислородную атмосферу. Затем в колбе образовывались искры, представляющие свет в смеси газов. Наконец, конденсатор охлаждал газы в жидкости, которую они затем брали на анализ. Спустя неделю, Юрии и Миллер получили удивительные результаты: в охлажденной жидкости в изобилии присутствовали органические соединения. В частности, Миллер обнаружил несколько аминокислот, в том числе глицин, аланин и глутаминовую кислоту. Аминокислоты – это строительные элементы белков, которые сами являются ключевыми компонентами и клеточных структур и клеточных ферментов, ответственных за функционирование важных химичексих реакций. Юри и Миллер пришли к выводу, что органические молекулы вполне могли выжить в безкислородной среде, что, в свою очередь, не заставило ждать появление простейших организмов.
Скорость света
Когда в 19 веке появился свет, он так и остался загадкой, которая вдохновляла на проведение многих увлекательных экспериментов. К примеру, "двухщелевый эксперимент" Томаса Юнга (Thomas Young), который показал, как ведут себя световые волны, но не частицы. Но тогда еще не знали, как быстро свет путешествует. В 1878 году физик А.А.Майкельсон (A.A. Michelson) провел эксперимент для того, чтобы рассчитать скорость света и доказать, что это конечная, измеряемая величина. Вот что он сделал:
1. Во-первых, он разместил два зеркала далеко друг от друга на разных сторонах дамбы возле университетского городка, расположив их так, что падающий свет отражался от одного зеркала и возвращался назад. Он измерил расстояние между зеркалами и обнаружил, что оно равнялось 605, 4029 метров.
2. Далее Майкельсон использовал паровой вентилятор для того, чтобы сторона одного из зеркал вращалась со скоростью 256 оборотов в секунду. Второе зеркало оставалось неподвижным.
3. При помощи линз он сфокусировал луч света на неподвижном зеркале. Когда луч света касался неподвижного зеркала, он отскакивал и отражался во вращающемся зеркале, возле которого Майкельсон разместил специальный экран. В связи с тем, что второе зеркало вращалось, траектория возвращения светового пучка незначительно изменилась. Когда Майкельсон измерил эти отклонения, он получил цифру 133 мм.
4. Используя полученные данные, ему удалось измерить скорость света, равную 186380 миль в секунду (299949530 километра). Допустимое значение для скорости света на сегодняшний день составляет 299792458 км в секунду. Измерения Майкельсона показали на удивление точный результат. Более того, в распоряжении ученых сейчас находятся более точные представления о свете и основ, на которых строятся теория квантовой механики и теория относительности.
Открытие радиации
1897 год был очень важным для Марии Кюри. Родился ее первый ребенок, а спустя всего несколько недель после его рождения она отправилась искать тему для докторской диссертации. В конце концов, она решила изучать "урановые лучи", впервые описанные Анри Беккерелем (Henri Becquerel). Беккерель открыл эти лучи случайно, когда он оставил соли урана, завернув их в непрозрачный материал вместе с фотопластинками в темной комнате, а вернувшись, обнаружил, что фотопластинки полностью засвечены. Мари Кюри выбрала для изучения эти таинственные лучи для того, чтобы выявить и другие элементы, действующие подобным образом. Уже на раннем этапе изучения Кюри поняла, что торий вырабатывает такие же лучи, как и уран. Она начала маркировать эти уникальные элементы, как "радиоактивные" и быстро осознала, что сила радиации, вырабатываемая ураном и торием, зависит от количества тория и урана. В конце концов, ей удастся доказать, что лучи – это свойства атомов радиоактивного элемента. Само по себе это было революционное открытие, но Кюри это не остановило. Она обнаружила, что настуран (уранинит) более радиоактивен, чем уран, это натолкнуло ее на мысль, что наверняка в естественных минералах существует неизвестный ей элемент. Ее муж Пьер присоединился к исследованиям, и они систематически уменьшали количества настурана до тех пор, пока не обнаружили новый изолированный элемент. Они назвали его полонием, в честь родины Марии Польши. Вскоре после этого, они обнаружили другой радиоактивный элемент, который они назвали радием, от латинского "луч". Кюри завоевала две Нобелевские премии за свою работу.
Собака Павлова
Знаете ли вы, что Иван Павлов, российский физиолог и химик, а также автор эксперимента по выработке у собак слюноотделения и прививания им условного рефлекса, совсем не был заинтересован в психологии или поведении? Его интересовали темы пищеварения и кровообращения. На самом деле, он изучал систему пищеварения собак, когда открыл то, что сегодня нам известно, как "условные рефлексы". В частности, он пытался понять наличие взаимосвязи между слюноотделением и работой желудка. Незадолго до этого, Павлов уже отметил, что желудок не начинает переваривать пищу без слюноотделения, которое происходит в первую очередь. Другими словами, рефлексы в вегетативной нервной системе тесно связывают друг с другом эти два процесса. Далее Павлов решил узнать, смогут ли внешние раздражители повлиять на пищеварение аналогичным образом. Чтобы это проверить, он начал во время приема пищи собакой включать и выключать свет, тикать метрономом и сделал слышимым звучание зуммера. В отсутствии этих раздражителей, у собак происходило слюноотделение только тогда, когда они видели и ели пищу. Но спустя некоторое время, у них начиналось слюноотделение при стимуляции звуком и светом, даже если им в это время не давали еды. Павлов также обнаружил, что этот тип условного рефлекса умирает, если стимул слишком часто "неправильно" использовать. К примеру, если звуковой сигнал собака слышит часто, но при этом не получает еды, то через какое-то время, она перестает реагировать на звук слюноотделением. Павлов опубликовал полученные результаты в 1903 году. Год спустя он получил Нобелевскую премию в области медицины, причем не за свою работу по условным рефлексам, а "в знак признания его работ по физиологии пищеварения, благодаря которым знания о жизненно-важных аспектах были преобразованы и расширены".
Подчинение авторитету
Эксперименты Стэнли Милграма (Stanley Milgram), которые он проводил в 1960-х годах, и по сей день квалифицируются как одни из самых известных и противоречивых научных экспериментов. Милграм хотел выяснить, как далеко сможет зайти обычный человек в причинении боли другому человеку под давлением авторитета. Вот что он сделал:
1. Милграм набрал добровольцев, обычных людей, которые должны были по приказу причинить другим добровольцам-актерам некоторую боль. Экспериментатор играл роль авторитета, который на время исследования постоянно присутствовал в помещении.
2. Авторитет перед началом каждого испытания продемонстрировал ничего не подозревавшим добровольцам, как пользоваться шок-аппаратом, который мог поражать человека разрядом в 15-450 вольт (повышенный уровень опасности).
3. Далее ученый отметил, что они должны протестировать, как шоковое потрясение может улучшить запоминание слов при помощи ассоциаций. Он поручил добровольцам в процессе эксперимента "награждать" добровольцев-актеров шоковыми ударами за неправильные ответы. Чем больше было неправильных ответов, тем выше уровень напряжения на аппарате. Причем, стоит отметить, что аппарат был сделан на высшем уровне: над каждым выключателем было написано соответствующее ему напряжение, от "слабого удара" до "труднопереносимого удара", прибор был оснащен множеством панелей со стрелочными вольтметрами. То есть усомниться в подлинности эксперимента у испытуемых не было возможности, причем исследование было построено так, что на каждый верный ответ было три ошибочных и авторитет говорил добровольцу каким "ударом" наказать "неспособного ученика".
4. "Учащиеся" кричали, когда получали шоковые удары. После того, как сила удара превышала 150 вольт, они требовали освобождения. При этом, авторитет призывал добровольцев продолжать эксперимент, не обращая внимания на требования "учащихся".
5. Некоторые участники эксперимента пожелали его покинуть после достижения наказания в 150 вольт, но большинство продолжали, пока не достигли максимального шокового уровня в 450 вольт.
По окончанию экспериментов, многие высказывались относительно неэтичности данного исследования, но полученные результаты были впечатляющими. Мильграм доказал, что обычные люди могут причинить боль невинному человеку просто потому, что получили такую команду от властного авторитета.
Измерение мира Эратосфеном
Это исследование было проведено в конце третьего века до нашей эры энтузиастом – ученым по имени Эратосфен, родившимся в 276 году до н.э. в Кирене (греческое поселение на территории современной Ливии). Эратосфен постоянно переключался с одного на другое, так как был очень увлекающимся человекам. При этом он работал библиотекарем в знаменитой Александрийской библиотеке. Именно там он провел свой знаменитый эксперимент. Он слышал, что в городе Сиене на реке Нил (современный Асуан) полуденное солнце светило прямо, не отбрасывая тени, в день летнего солнцестояния. Заинтригованный Эратосфен измерил тень, отбрасываемую вертикальной палкой в Александрии в тот же день и время. Он определил, что угол солнечного света там составляет 7,2 градуса или 1/50 от круга в 360 градусов. Греки знали, что Земля сферическая. Эратосфен решил, что зная расстояние между двумя городами и то, что угол тени составляет 1/50 от полной окружности, можно перемножить эти два значения и получить длину окружности Земли. В итоге, он получил цифру 45700 километров. Реальная длина окружности составляет примерно 40000 километров. Учитывая точность измерительных приборов того времени и то, что расстояние между городами было определено с погрешностью, можно сказать, что его вывод оказался очень даже точным, а отклонение не такое уж и большое. Именно он, увлекаясь подобными измерениями, придумал науку географию, отцом которой его считают до сих пор.
Пульс и течение крови
О крови и о том, как она течет внутри живых организмов, говорили многие, включая Галена – греческого врача-философа, теория которого просуществовала около полутора тысяч лет. Но только в 1628 году была опубликована иная теория, которая изменила все. Опубликовал ее Уильям Харви, который был королевским врачом при дворе Джеймса I. Такая работа давала ему время и деньги на исследования, которыми он с удовольствием занимался, иногда ставя очень странные и даже жуткие эксперименты. Например, Харви публично нарезал животных, чтобы показать, что внутри них очень мало крови. Также он проводил эксперименты на змеях, показывая, что если зажать сосуды, которые ведут к сердцу, то оно сжимаемся и белеет, а если те, которые из него выходят, то оно распухает. Так он доказал течение крови через сердце. Он также ставил эксперименты на добровольцах. В частности, перекрывая ток крови к конечностям, чтобы понять, как она циркулирует по организму человека. В результате своих исследований он сделал вывод, что кровь течет по двум кругам, формируется в печени из еды, которую люди едят, и обязательно проходит через легкие, насыщаясь ”духом”. Но в любом случае, она двигается по всему телу, заходя даже в самые удаленные его уголки. Свою теорию он опубликовал в 1628 году в книге De Motu Cordis (Движение сердца). Его подход, основанный на фактических данных, изменил медицинскую науку, и сегодня он признан отцом современной медицины и физиологии.
Генетика
Ребенок всегда похож на родителей – от небольшого сходства до полноценной копии. Многие люди во все времена задавались вопросом, зачем это нужно. Ответы на эти вопросы стали появляться примерно 150 лет назад от ученого, родившегося на территории нынешней Чешской республики в 1822 году. У родителей Грегора Менделя не было денег на образование детей и в 1843 году он присоединился к августинскому ордену, монашеской группе, которая делала упор на исследования и обучение. Укрывшись в монастыре в Брно, застенчивый Грегор сразу начал интересоваться наукой. Сначала он пробовал скрещивать цветы, получая новые оттенки и форму лепестков. Особенно его привлекали фуксии. Потом он переключился на горох, тщательно документируя свои опыты и доказав, что при скрещивании зеленого и желтого гороха всегда получается желтый. Однако скрещивание этих двух желтых ”потомков” периодически снова выдавало зеленый горох. Он опередил свое время. Его исследованиям уделялось мало внимания в свое время, но спустя десятилетия, когда другие ученые обнаружили и воспроизвели эксперименты Менделя, они стали рассматриваться как прорыв. Гениальность экспериментов Менделя заключалась в том, что он сформулировал простые гипотезы, которые очень хорошо объясняют некоторые вещи, вместо того, чтобы сразу решать все сложности наследственности. Так он заложил основы генетики и дал современным ученым отличную базу для развития.
Цветовые спектры света
Исаак Ньютон во время вспышки чумы в его студенческом городке пережидал эпидемию в другом месте и часто заходил на местный рынок, где раздобыл детскую игрушку в виде призмы. Она просто показывала, что в нее входит свет, а на выходе получается радуга. Это было все, что она могла дать, но Ньютон начал изучать ее более внимательно и сделал важное открытие. Он доказал, что привычный свет разбивается на цветовые спектры. Это открытие позволило создать науку под названием оптика, являющуюся неотъемлемой частью современной физики. Чтобы доказать, что дело было не в призме, он пропускал свет через одну призму, а один из выделенных цветовых потоков – через другую. Он не менял свой цвет, значит дело было не в призме и она не могла изменить проходящий через нее свет, окрасив его. В оригинальной статье 1672 года Ньютон недостаточно полно описал установку, с которой он работал, поэтому его современники изо всех сил старались повторить эксперимент, но им это не удавалось. Впрочем, результаты никто не ставил под сомнение, так как они были очень убедительными. Ньютон творил много странных вещей, включая углубление в библейскую нумерологию, оккультизм и втыкание иголок в свои веки, но все это не помешало ему сделать много важных открытий и увековечить свое имя в истории.
Световые волны
Если что-то сказать, то за счет вибрации воздуха звук передается в уши слушателя. Если бросить камень, то по воде идут волны, но у них всегда есть среда, в которой они движутся. Свет проходит и через воздух, и через воду, и даже через вакуум. Именно это и вызывало вопросы в конце 19-го века. Никто не понимал, почему нет среды, но есть движение света. Единственным объяснением было существование светоносного эфира. Работая вместе в Университете Западного Кейса в Огайо, Альберт Майкельсон и Эдвард Морли намеревались доказать существование этого эфира. То, что у них получилось, является возможно самым известным неудавшимся экспериментом в истории. Гипотеза ученых заключалась в следующем: когда Земля вращается вокруг Солнца, она постоянно проходит сквозь эфир, создавая эфирный ветер. Когда путь светового луча движется в том же направлении, что и ветер, свет должен двигаться немного быстрее по сравнению с движением ”против ветра”. В начале 1880-х годов Майкельсон изобрел тип интерферометра, инструмента, который объединяет источники света. Интерферометр Майкельсона излучает свет через одностороннее зеркало. Свет разделяется на две части и получающиеся лучи движутся под прямым углом друг к другу. Через некоторое время они отражаются от зеркал назад к центральному месту встречи. Если световые лучи приходят в разное время из-за какого-то искажения (скажем, от эфирного ветра), они создают характерную интерференционную картину. Исследователи защитили свой прибор от вибраций, поместив его на твердую плиту из песчаника, и изолировали его в подвале здания кампуса. Майкельсон и Морли медленно поворачивали плиту, ожидая увидеть интерференционные картины, когда световые лучи синхронизируются с направлением эфира, но скорость света не менялась. В итоге эксперимент провалился, но ученые не сдавались и в 1907 году Майкельсон стал первым американцем, получившим Нобелевскую премию за исследования на основе оптических приборов. А сомнения в теории эфира положили начало исследованиям многих других ученых. В том числе именно это косвенно привело к открытию Альбертом Эйнштейном теории относительности.
Эксперимент Марии Кюри
Мария Кюри является одной из немногих женщин, имена которых отмечены в больших экспериментах. Родившись в 1867 году в Варшаве, она иммигрировала в Париж в возрасте 24 лет, чтобы получить возможность продолжить изучение математики и физики. Там она познакомилась и вышла замуж за физика Пьера Кюри. При всем ее таланте и способностях, она бы, скорее всего, не закрепилась в научных кругах, если бы не он. При этом именно она выдвигала основные идеи в той области, в которой они делали открытия. Для своей докторской диссертации в 1897 году Мари начала исследовать новомодный вид излучения, похожий на рентгеновские лучи и обнаруженный всего годом ранее. Используя прибор, называемый электрометром, созданный Пьером и его братом, Мари измерила таинственные лучи, испускаемые торием и ураном. Независимо от минералогического состава элементов (один был желтым кристаллом, а второй – черным порошком) интенсивность излучения менялась исключительно в зависимости от количества самого элемента. Кюри пришла к выводу, что радиоактивность – термин, который она придумала – была неотъемлемым свойством отдельных атомов, вытекающим из их внутренней структуры. До этого момента ученые считали атомы элементарными и неделимыми. Мари открыла дверь для понимания материи на более фундаментальном, субатомном уровне. Кюри была первой женщиной, получившей Нобелевскую премию в 1903 году, и одной из немногих людей вообще, получивших вторую Нобелевскую премию в 1911 году (за ее более поздние открытия элементов радия и полония).
Электрон – частица заряда
Двадцатый век стал для физики бурным временем: в течение чуть более десяти лет мир познакомился с квантовой физикой, специальной теорией относительности и электронами – первым доказательством того, что атомы имеют делимые части. Надо было понять, являются ли электроны носителями заряда. Тут к делу и подключился Роберт Милликан, который до этого не добился особых высот в физике. В своей лаборатории в Чикагском университете он начал работать с контейнерами с густым водяным паром, называемыми облачными камерами, и изменять напряженность электрического поля внутри них. Облака капель воды образовывались вокруг заряженных атомов и молекул, прежде чем спуститься под действием силы тяжести. Регулируя напряженность электрического поля, он мог замедлить или даже остановить падение капель, противодействуя гравитации с помощью электричества. Позже Милликан и его ученики поняли, что с водой работать сложно, так как она быстро испаряется. В итоге они перешли на масло, которое разбрызгивалось при помощи распылителя от духов. Все более изощренные эксперименты с каплями масла в конечном итоге определили, что электрон действительно представляет собой единицу заряда. Они оценили его значение с большой точностью. Это был переворот для физики элементарных частиц.
Как частицы образуют волны
Как думаете, свет – это частица или волна? Многие ученые остановились на том, что свет – это частица, основываясь на экспериментах Ньютона с призмами. Но доказательства Томаса Янга разрушили это убеждение. Янг интересовался всем – от египтологии (он помог расшифровать Розеттский камень) до медицины и оптики. Чтобы исследовать сущность света, в 1801 году Янг подготовил эксперимент. Он проделал две тонкие щели в непрозрачном объекте, пропустил сквозь них солнечный свет и наблюдал, как лучи отбрасывают ряд ярких и темных полос на экране. Разные участки Янг объяснял тем, что свет распространяется волнообразно, как рябь на пруду, с гребнями и впадинами от разных световых волн, усиливающими и компенсирующими друг друга. Хотя современные физики в начале отвергли выводы Янга, повторение его экспериментов с двумя щелями показало, что частицы света действительно движутся, как волны. Дальнейшие эксперименты доказывали, что такое распространение света возможно только в том случае, если частицы движутся, как волны. Это открытие и его особенности в том числе лежат в основе квантовой физики.
Доказательство процветания биологических видов
К 1960-м годам экологи пришли к соглашению, что среды обитания процветают главным образом благодаря разнообразию видов в них. Считалось, что изменение соотношения представителей этих видов не приводит к изменению всей среды обитания. Но Роберт Пейн был с этим не согласен. Пейн провел свои эксперименты, связанные с исключением морских звезд из приливных бассейнов вдоль побережья штата Вашингтон. Оказалось, что уничтожение этого единственного вида может дестабилизировать целую экосистему. Без морских звезд их добычу начали поглощать мидии, сильно увеличивая свою популяцию. Это приводило к тому, что они начали вытеснять водоросли и занимать их место. В итоге вся экосистема превратилась просто в рассадник мидий. Открытие Пейна оказало большое влияние на сохранение видов живых организмов, доказав, что надо сохранять не отдельные виды, а целые экосистемы. Так открытие Пейна перевернуло взгляд на всю систему взаимодействия живых организмов. Он умер в 2016 году и в последние годы много работал над изучением влияния человека на исчезновение видов, в том числе и за счет глобального потепления.
|