Magnus Fragor

Главная » Статьи » Природа

Да будет свет!

На протяжении всей жизни нас окружают удивительные вещи, предметы, места. Мы видим их, но вовсе не потому, что они существуют, а благодаря свету.

Если бы не свет, то у живых существ не было бы зрения как инструмента, и нам пришлось бы довольствоваться другими органами чувств. Как кроты, проживающие под землей, довольствуются слухом. Что же представляет собой свет? Что это за понятие с точки зрения физики и какое значение он имеет для жизни на Земле?

Тайну света люди пытались раскрыть в течение многих столетий, однако приблизиться к разгадке удалось только в XVIII веке. Сначала датский физик Ганс Эрстеда выяснил, что электроток способен оказывать влияние на стрелку в магнитном компасе, а затем британский математик Джеймс Максвелл сумел доказать, что магнитные и электрические поля существуют в виде волн, распространяющихся со скоростью света.

Из этого ученые дали определение света как формы электромагнитного излучения, которое воспринимается глазом человека.

Установить природу света помогают оптические явления, изучением которых занимается оптика. Эта наука стала одним из первых разделов физики, установившим двойственную природу света. Согласно корпускулярной теории, свет – это поток частиц, называемых фотонами и квантами.

По волновой теории, свет являет собой совокупность электромагнитных волн, при этом возникающие в природе оптические эффекты становятся результатом сложения данных волн. Что интересно, и теория о потоках частиц, и теория о волнах имеют право на жизнь.

Как и любое природное явление, свет обладает множеством уникальных характеристик, среди которых одной из важнейших является цвет. Электромагнитное излучение, воспринимаемое нашим глазом, различается по диапазону длин и частоте волны, что, в свою очередь, влияет на световой спектральный состав. К примеру, фиолетовый цвет видится при длине волн 380-440 нм и частоте 790-680 ТГц, а желтый – при показателях 565-590 нм и 530-510 ТГц.

Помимо цвета, свет обладает способностью перемещаться в пространстве, преломляться и отражаться. Преломление света представляет собой изменение направления электромагнитных волн. В нашей обыденной жизни такое явление встречается повсеместно. Например, если посмотреть на стакан чая, в котором находится ложка, можно заметить, что на границе воздуха и жидкости она будто «преломлена».

Аналогично привычным явлением для нас является отражение света, позволяющее увидеть себя в водной глади, зеркале или на блестящих предметах. К другим характеристикам можно отнести способность света к поляризации и изменению интенсивности.

Скорость света рассчитывается в двух субстанциях – в вакууме и прозрачной среде. В первом случае ее показатели неизменны. В космическом пространстве скорость света является фундаментальной постоянной единицей и составляет 299792458 метров в секунду.

Считается, что помимо света, с аналогичной скоростью в природе распространяются электромагнитные излучения (например, рентгеновские лучи или радиоволны) и, возможно, гравитационные волны. Скорость света, находящегося в прозрачной среде, может меняться в зависимости от фазы колебательных движений.

В связи с этим различают фазовую скорость, которая обычно (но необязательно) меньше скорости в вакууме, и групповую – всегда меньше скорости в вакууме.

Как говорилось выше, способность человека видеть окружающие предметы существует только благодаря свету. При этом мы не смогли бы воспринимать электромагнитные излучения, если бы в наших глазах не было специальных рецепторов, которые реагируют на данное излучение. Глазная сетчатка человека состоит из двух типов клеток – палочек и колбочек. Первые высоко чувствительны к освещению, поэтому могут работать только при низкой освещенности, то есть отвечают за ночное зрение. При этом они демонстрируют мир исключительно в черно-белых цветах.

Колбочки обладают пониженной чувствительностью к свету и обеспечивают дневное зрение, позволяющее видеть цветное изображение. Спектральный состав света хорошо воспринимается благодаря тому, что в наших глазах существуют 3 вида колбочек, которые различаются между собой распределением чувствительности.

Давайте разберемся: что же такое свет? Он вокруг нас и позволяет нам видеть мир. Но спросите любого из нас, и большинство не сможет объяснить, что такое на самом деле этот свет. Свет помогает нам понимать мир, в котором мы живем. Наш язык это отражает: во тьме мы передвигаемся на ощупь, свет мы начинаем видеть вместе с наступлением зари. И все же мы далеки от полного понимания света. Если вы приблизите луч света, что в нем будет?

Да, свет движется невероятно быстро, но разве его нельзя применить для путешествий? И так далее и тому подобное. Конечно, все должно быть не так. Свет озадачивает лучшие умы на протяжении веков, но знаковые открытия, совершенные за последние 150 лет, постепенно приоткрывали завесу тайны над этой загадкой. Теперь мы более-менее понимаем, что она такое.

Физики современности не только постигают природу света, но и пытаются управлять ей с беспрецедентной точностью – и значит, свет очень скоро можно заставить работать самым удивительным способом. По этой причине Организация Объединенных Наций провозгласила 2015 год Международным годом Света.

Свет можно описать всевозможными способами. Но начать стоит с этого: свет – это форма излучения (радиации). И в этом сравнении есть смысл. Мы знаем, что избыток солнечного света может вызвать рак кожи. Мы также знаем, что радиационное облучение может вызвать риск развития некоторых форм рака; нетрудно провести параллели.

Но не все формы излучения одинаковы. В конце 19 века ученые смогли определить точную суть светового излучения. И что самое странное, это открытие пришло не в процессе изучения света, а вышло из десятилетий работы над природой электричества и магнетизма.

Электричество и магнетизм кажутся совершенно разными вещами. Но ученые вроде Ганса Христиана Эрстеда и Майкла Фарадея установили, что те глубоко переплетаются. Эрстед обнаружил, что электрический ток, проходящий через провод, отклоняет иглу магнитного компаса. Между тем, Фарадей обнаружил, что перемещение магнита вблизи провода может генерировать электрический ток в проводе.

Математики того дня использовали эти наблюдения для создания теории, описывающей это странное новое явление, которое они назвали «электромагнетизм». Но только Джеймс Клерк Максвелл смог описать полную картину.

Вклад Максвелла в науку сложно переоценить. Альберт Эйнштейн, который вдохновлялся Максвеллом, говорил, что тот изменил мир навсегда. Среди прочих вещей, его вычисления помогли нам понять, что такое свет.

Максвелл показал, что электрические и магнитные поля передвигаются в виде волн, и эти волны движутся со скоростью света. Это позволило Максвеллу предсказать, что свет сам по себе переносится электромагнитными волнами – и это означает, что свет является формой электромагнитного излучения.

В конце 1880-х, через несколько лет после смерти Максвелла, немецкий физик Генрих Герц первым официально продемонстрировал, что теоретическая концепция электромагнитной волны Максвелла была верной.

Максвелл занимает место в анналах науки о свете по другой, более практической причине. В 1861 году он обнародовал первую устойчивую цветную фотографию, полученную с использованием системы трехцветного фильтра, которая заложила основу для многих форм цветной фотографии сегодня.

Сама фраза о том, что свет является формой электромагнитного излучения, многого не говорит. Но помогает описать то, что мы все понимаем: свет – это спектр цветов. Это наблюдение восходит еще к работам Исаака Ньютона. Мы видим цветовой спектр во всей его красе, когда радуга всходит на небе – и эти цвета напрямую связаны с максвелловским понятием электромагнитных волн.

Красный свет на одном конце радуги – это электромагнитное излучение с длиной волны от 620 до 750 нанометров; фиолетовый цвет на другом конце – излучение с длиной волны от 380 до 450 нм. Но в электромагнитном излучении есть и больше, чем видимые цвета. Свет с длиной волны длиннее красного мы называем инфракрасным. Свет с длиной волны короче фиолетового называем ультрафиолетовым.

Многие животные могут видеть в ультрафиолетовом, некоторые люди тоже. В некоторых случаях люди видят даже инфракрасный. Возможно, поэтому нас не удивляет, что ультрафиолетовый и инфракрасный мы называем формами света. Любопытно, однако, что если длины волн становятся еще короче или длиннее, мы перестаем называть их «светом». За пределами ультрафиолетового, электромагнитные волны могут быть короче 100 нм. Это царство рентгеновских и гамма-лучей. Вы когда-нибудь слышали, чтобы рентгеновские лучи называли формой света?

Ученый не скажет «я просвечиваю объект рентгеновским светом». Он скажет «я использую рентгеновские лучи». Между тем, за пределами инфракрасных и электромагнитных длин волны вытягиваются до 1 см и даже до тысяч километров. Такие электромагнитные волны получили названия микроволн или радиоволн. Кому-то может показаться странным воспринимать радиоволны как свет.

Нет особой физической разницы между радиоволнами и видимым светом с точки зрения физики. Вы будете описывать их одними и теми же уравнениями и математикой. Только наше повседневное восприятие различает их.

Таким образом, мы получаем другое определение света. Это очень узкий диапазон электромагнитного излучения, которое могут видеть наши глаза. Другими словами, свет – это субъективный ярлык, который мы используем только вследствие ограниченности наших органов чувств.

Если вам нужны более подробные доказательства того, насколько субъективно наше восприятие цвета, вспомните радугу. Большинство людей знают, что спектр света содержит семь основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. У нас даже есть удобные пословицы и поговорки про охотников, которые желают знать место нахождения фазана.

Посмотрите на хорошую радугу и попробуйте разглядеть все семь. Это не удалось даже Ньютону. Ученые подозревают, что ученый разделил радугу на семь цветов, поскольку число «семь» было очень важным для древнего мира: семь нот, семь дней недели и т. п.

Работа Максвелла в области электромагнетизма завела нас дальше и показала, что видимый свет был частью широкого спектра радиации. Также стала понятна истинная природа света. На протяжении веков ученые пытались понять, какую на самом деле форму принимает свет на фундаментальных масштабах, пока движется от источника света к нашим глазам.

Некоторые считали, что свет движется в форме волн или ряби, через воздух или загадочный «эфир». Другие думали, что эта волновая модель ошибочна, и считали свет потоком крошечных частиц. Ньютон склонялся ко второму мнению, особенно после серии экспериментов, которые он провел со светом и зеркалами.

Он понял, что лучи света подчиняются строгим геометрическим правилам. Луч света, отраженный в зеркале, ведет себя подобно шарику, брошенному прямо в зеркало. Волны не обязательно будут двигаться по этим предсказуемым прямым линиям, предположил Ньютон, поэтому свет должен переноситься некоторой формой крошечных безмассовых частиц.

Проблема в том, что были в равной степени убедительные доказательства того, что свет представляет собой волну. Одна из самых наглядных демонстраций этого была проведено в 1801 году. Эксперимент с двойной щелью Томаса Юнга, в принципе, можно провести самостоятельно дома.

Возьмите лист толстого картона и аккуратно проделайте в нем два тонких вертикальных разреза. Затем возьмите источник «когерентного» света, который будет излучать свет только определенной длины волны: лазер отлично подойдет. Затем направьте свет на две щели, чтобы проходя их он падал на другую поверхность.

Вы ожидаете увидеть на второй поверхности две ярких вертикальных линии на тех местах, где свет прошел через щели. Но когда Юнг провел эксперимент, он увидел последовательность светлых и темных линий, как на штрих-коде.

Когда свет проходит через тонкие щели, он ведет себя подобно водяным волнам, которые проходят через узкое отверстие: они рассеиваются и распространяются в форме полусферической ряби. Когда этот свет проходит через две щели, каждая волна гасит другую, образуя темные участки. Когда же рябь сходится, она дополняется, образуя яркие вертикальные линии. Эксперимент Юнга буквально подтвердил волновую модель, поэтому Максвелл облек эту идею в твердую математическую форму. Свет – это волна.

Но потом произошла квантовая революция.

Во второй половине девятнадцатого века, физики пытались выяснить, как и почему некоторые материалы абсорбируют и излучают электромагнитное излучение лучше других. Стоит отметит, что тогда электросветовая промышленность только развивалась, поэтому материалы, которые могут излучать свет, были серьезной штукой.

К концу девятнадцатого века ученые обнаружили, что количество электромагнитного излучения, испускаемого объектом, меняется в зависимости от его температуры, и измерили эти изменения. Но никто не знал, почему так происходит.

В 1900 году Макс Планк решил эту проблему. Он выяснил, что расчеты могут объяснить эти изменения, но только если допустить, что электромагнитное излучение передается крошечными дискретными порциями. Планк называл их «кванта», множественное число латинского «квантум». Спустя несколько лет Эйнштейн взял его идеи за основу и объяснил другой удивительный эксперимент.

Физики обнаружили, что кусок металла становится положительно заряженным, когда облучается видимым или ультрафиолетовым светом. Этот эффект был назван фотоэлектрическим.

Атомы в металле теряли отрицательно заряженные электроны. Судя по всему, свет доставлял достаточно энергии металлу, чтобы тот выпустил часть электронов. Но почему электроны так делали, было непонятно. Они могли переносить больше энергии, просто изменив цвет света. В частности, электроны, выпущенные металлом, облученным фиолетовым светом, переносили больше энергии, чем электроны, выпущенные металлом, облученным красным светом. Если бы свет был просто волной, это было бы нелепо.

Обычно вы изменяете количество энергии в волне, делая ее выше – представьте себе высокое цунами разрушительной силы – а не длиннее или короче. В более широком смысле, лучший способ увеличить энергию, которую свет передает электронам, это сделать волну света выше: то есть сделать свет ярче. Изменение длины волны, а значит и света, не должно было нести особой разницы.

Эйнштейн понял, что фотоэлектрический эффект проще понять, если представить свет в терминологии планковских квантов.

Он предположил, что свет переносится крошечными квантовыми порциями. Каждый квант переносит порцию дискретной энергии, связанной с длиной волны: чем короче длина волны, тем плотнее энергия. Это могло бы объяснить, почему порции фиолетового света с относительно короткой длиной волны переносят больше энергии, чем порции красного света, с относительно большой длиной. Также это объяснило бы, почему простое увеличение яркости света не особо влияет на результат.

Свет поярче доставляет больше порций света к металлу, но это не изменяет количество энергии, переносимой каждой порцией. Грубо говоря, одна порция фиолетового света может передать больше энергии одному электрону, чем много порций красного света.

Эйнштейн назвал эти порции энергии фотонами и в настоящее время их признали фундаментальными частицами. Видимый свет переносится фотонами, другие виды электромагнитного излучения вроде рентгеновского, микроволнового и радиоволнового – тоже. Другими словами, свет – это частица.

На этом физики решили положить конец дебатам на тему того, из чего состоит свет. Обе модели были настолько убедительными, что отказываться от одной не было никакого смысла. К удивлению многих нефизиков, ученые решили, что свет ведет себя одновременно как частица и как волна. Другими словами, свет – это парадокс.

При этом у физиков не возникло проблем с раздвоением личности света. Это в какой-то мере сделало свет полезным вдвойне. Сегодня, опираясь на работы светил в прямом смысле слова – Максвелла и Эйнштейна, – мы выжимаем из света все.

Оказывается, что уравнения, используемые для описания света-волны и света-частицы, работают одинаково хорошо, но в некоторых случаях одно проще использовать, чем другое. Поэтому физики переключаются между ними, примерно как мы используем метры, описывая собственный рост, и переходим на километры, описывая поездку на велосипеде.

Некоторые физики пытаются использовать свет для создания шифрованных каналов связи, для денежных переводов, к примеру. Для них имеет смысл думать о свете как о частицах. Виной всему странная природа квантовой физики. Две фундаментальные частицы, как пара фотонов, могут быть «запутаны». Это значит, что они будут иметь общие свойства вне зависимости от того, как далеки будут друг от друга, поэтому их можно использовать для передачи информации между двумя точками на Земле.

Еще одна особенность этой запутанности в том, что квантовое состояние фотонов изменяется, когда их считывают. Это значит, что если кто-то попытается подслушать зашифрованный канал, в теории, он сразу выдаст свое присутствие.

Другие используют свет в электронике. Им полезней представлять свет в виде серии волн, которые можно приручить и контролировать. Современные устройства под названием «синтесайзеры светового поля» могут сводить световые волны в идеальной синхронности друг с дружкой. В результате они создают световые импульсы, которые более интенсивные, кратковременные и направленные, чем свет обычной лампы.

Вот еще один способ описать свет: это инструмент. Впрочем, ничего нового. Жизнь использовала свет еще с тех пор, когда первые примитивные организмы развили светочувствительные ткани. Глаза людей улавливают фотоны видимого света, мы используем их для изучения мира вокруг.

Современные технологии еще дальше уводят эту идею. В 2014 году Нобелевская премия по химии была присуждена исследователям, которые построили настолько мощный световой микроскоп, что он считался физически невозможным. Оказалось, что если постараться, свет может показать нам вещи, которые мы думали никогда не увидим.

Интересные факты о свете

ООН объявила 2015 год Международным годом света, чтобы продемонстрировать "жителям Земли важность света и оптических технологий в жизни, для будущего и для развития общества".

Вот несколько интересных фактов о свете, о которых, возможно, вы не знали.

Солнце на самом деле белое, если смотреть из космоса, так как его свет не рассеивается нашей атмосферой. С Венеры вы вообще не увидите Солнце, так как там атмосфера слишком плотная.

Люди биолюминесцентны благодаря реакциям обмена веществ, но наше свечение в 1000 раз слабее, чем можно увидеть невооруженным взглядом.

Солнечный свет может проникать на глубину океана примерно на 80 метров. Если спуститься на 2000 метров глубже, то там можно обнаружить биолюминесцентного морского черта, который заманивает своих жертв светящейся плотью.

Растения зеленые, так как они отражают зеленый свет и впитывают другие цвета для фотосинтеза. Если вы поместите растение под зеленый свет, оно, скорее всего, погибнет.

Северное и южное полярное сияние возникает, когда "ветер" от солнечных вспышек взаимодействует с частицами земной атмосферы. Согласно легендам эскимосов, полярное сияние – это души умерших, играющих в футбол с головой моржа.

За 1 секунду Солнце излучает достаточно энергии, чтобы обеспечить ею весь мир в течение миллиона лет.

Самой долгогорящей лампой в мире является столетняя лампа в пожарной части Калифорнии. Она непрерывно горит с 1901 года.

Световой чихательный рефлекс, который вызывает неконтролируемые приступы чихания в присутствии яркого света, встречается у 18-35 процентов людей, хотя никто не может объяснить, почему он возникает. Один из способов справится с ним – носить солнечные очки.

При двойной радуге, свет отражается дважды внутри каждой капли воды, а цвета во внешней радуге расположены в обратном порядке.

Некоторые животные видят свет, который мы не можем видеть. Пчелы видят ультрафиолетовый свет, в то время как гремучие змеи видят инфракрасный свет.

Ниагарский водопад был впервые электрически подсвечен в 1879 году, и освещение было равноценно подсветке 32000 свечей. Сегодня подсветка Ниагарского водопада равноценна освещению 250 миллионами свечей.

Когда свет проходит через разные вещества, он замедляется и преломляется. Таким образом линза фокусирует лучи в одной точке и может поджечь бумагу.

Свет обладает импульсом. Ученые разрабатывают способы использования этой энергии для дальних космических путешествий.

Глаза лягушки настолько чувствительны к свету, что исследователи из Сингапура используют их для разработки невероятно точных фотонных детекторов.

Видимый свет является лишь частью электромагнитного спектра, который видят наши глаза. Именно поэтому светодиодные лампы такие экономичные. В отличие от ламп накаливания, светодиодные лампы излучают только видимый свет.

Светлячки излучают холодное свечение через химическую реакцию со 100-процентной эффективностью. Ученые работают над имитацией светлячков для создания более экономичных светодиодов.

Чтобы изучить, как наши глаза воспринимают свет, Исаак Ньютон вставлял иглы в глазницу. Он пытался понять является ли свет результатом того, что исходит извне или изнутри. (Ответ: оба предположения верны, так как палочки в глазах реагируют на определенные частоты).

Если бы Солнцу внезапно пришел конец, никто на Земле не заметил бы этого еще в течении 8 минут 17 секунд. Это время, которое требуется солнечному свету, чтобы достичь Земли. Но не беспокойтесь, у Солнца осталось топлива еще на 5 миллиардов лет.

Несмотря на название, черные дыры на самом деле являются самыми яркими объектами во Вселенной. Несмотря на то, что мы не можем заглянуть за горизонт событий, они могут генерировать больше энергии, чем галактики, в которых они расположены.

Радуга возникает, когда свет встречается с каплями воды в воздухе, преломляется и отражается внутри капли и снова преломляется, оставляя ее.

Некоторые виды чешуекрылых распространённого в Америке рода Грета обладают почти полностью прозрачными крыльями, и самый известный пример – бабочка Грета Ото. Такой эффект достигается благодаря наличию особых наноструктур в тканях крыла, сильно понижающих светоотражающую способность. Вкупе с низкими показателями поглощения и рассеяния проходящего через крыло света это и обеспечивает прозрачность.

В водной среде можно наблюдать сонолюминесценцию, то есть превращение звука в свет. Для этого нужно опустить в воду резонатор, создающий стоячую сферическую ультразвуковую волну. В фазе разрежения волны из-за очень низкого давления возникает кавитационный пузырёк, который некоторое время растёт, а затем в фазе сжатия быстро схлопывается. В этот момент в центре пузырька возникает вспышка света, а наблюдатель видит постоянное голубоватое свечение, так как пузырьки зарождаются и схлопываются с очень большой скоростью. Согласно господствующей в научных кругах точке зрения, данное излучение имеет тепловую природу.

На глубинах в несколько сотен метров и больше не наблюдается полной темноты, как можно предположить. Солнечный свет сюда не доходит, но растворённые в воде изотопы кальция и других элементов испускают быстрые электроны, которые вызывают слабое свечение вследствие эффекта Вавилова-Черенкова. По-видимому, именно это обстоятельство является причиной тому, что глубоководные рыбы в ходе эволюции не потеряли глаза.

Исследования, проведённые на резуховидке Таля, показали, что внутри растений существует механизм передачи информации о количестве и составе падающего света, чем-то похожий на нервную систему животных. Когда учёные облучали светом только один лист, во всех листьях растения начинались определённые химические реакции. Что более удивительно, растения проявляли разное химическое реагирование на различный свет (красный, синий или белый), как будто у них есть механизм извлечения информации о свойствах света. Например, определённое облучение, а затем заражение растения патогенными бактериями резко повышало сопротивляемость этим бактериям по сравнению с другим, необлучённым растением. Это свидетельствует о том, что растения обладают специфической памятью и могут исходя из свойств света определять наиболее опасные инфекции для текущего времени года, подстраивая под них свой иммунитет.

Существует версия, что пираты и другие моряки надевали повязку на глаз из чисто практических соображений. Дело в том, что в трюме корабля очень темно, и при спуске туда с палубы глазам человека требуется несколько минут для адаптации. А если моряк носил повязку, он мог снять её в трюме и сразу хорошо видеть одним глазом – это сильно повышало эффективность его работы в опасные моменты, особенно в сражениях. Хотя подтверждающих её исторических сведений не существует, версия выглядит правдоподобной и была проверена тестами в наше время. Задокументировано аналогичное использование повязки пилотами на заре развития аэропланов, когда они пролетали над ярко освещёнными городами: одним глазом они могли смотреть наружу, а другим, освобождаемым из-под повязки, на карты и приборы в тусклой кабине.

Все животные соблюдают так называемый циркадный ритм, то есть циклическую смену биологических процессов в организме, привязанную к 24-часовой длине земных суток. Необходимость соблюдения циркадного ритма заложена генетически, так как даже слепые существа могут воспринимать изменения освещения фоторецепторами на коже. Однако недавно была обнаружена безглазая рыба Phreatichthys andruzzii, живущая в подземных пещерах, у которой внутренние часы настроены не на 24, а на 47 часов. Виновата в этом мутация, которая отключила все светочувствительные рецепторы на теле этих рыб.

Предельно возможная скорость частиц называется скоростью света в вакууме и является константой. Однако вне вакуума свет может распространяться со скоростью гораздо ниже этой постоянной величины. Существует особое агрегатное состояние материи, конденсат Бозе — Эйнштейна, в котором свет замедляется наиболее сильно. Экспериментально свет был даже полностью остановлен в конденсате Бозе – Эйнштейна рубидия путём образования стационарных, не смещающихся солитонов.

Свет распространяется в прозрачной среде медленнее, чем в вакууме. Например, фотонам, испытывающим множество столкновений на пути от солнечного ядра, излучающего энергию, может потребоваться около миллиона лет, чтобы достичь поверхности Солнца. Однако, двигаясь в открытом космосе, такие же фотоны долетают до Земли всего за 8,3 минуты.

Категория: Природа | Добавил: laf2304 (16.07.2021)
Просмотров: 211 | Рейтинг: 0.0/0
Всего комментариев: 0
avatar
[ Категории раздела ]
Космос [362]
Природа [355]
Общество [355]
Технологии [350]
Загадки Вселенной [366]
Разное [259]

[ Поиск ]

[ Вход на сайт ]

[ Статистика ]

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Copyright ARA © 2026
uCoz