Magnus Fragor

Главная » Статьи » Природа

Естественное дыхание Земли

Землетрясения – подземные толчки и колебания поверхности Земли, вызванные естественными причинами (главным образом тектоническими процессами) или искусственными процессами (взрывы, заполнение водохранилищ, обрушением подземных полостей горных выработок). Небольшие толчки могут вызывать также подъём лавы при вулканических извержениях.

Каждый год на земном шаре происходят несколько сотен тысяч землетрясений, и около ста из них – разрушительные, несущие гибель людям и целым городам. Среди самых страшных землетрясений уходящего ХХ века – землетрясение в Китае в 1920 году, унесшее жизни более 200 тысяч людей, и в Японии в 1923 году, во время которого погибли более 100 тысяч человек. Научно-технический прогресс оказался бессилен перед грозной стихией. И спустя более чем пятьдесят лет во время землетрясений продолжают гибнуть сотни тысяч людей: в 1976 году во время Тянь-Шаньского землетрясения погибли 250 тысяч человек. Затем были страшные землетрясения в Италии, Японии, Иране, США (в Калифорнии) и у нас – на территории бывшего СССР: в 1989 году в Спитаке и в 1995 году в Нефтегорске. Совсем недавно – в 1999 году стихия настигла и погребла под обломками собственных домов около 100 тысяч человек во время трех страшных землетрясений в Турции.

Чаще всего землетрясения происходят в районах быстро меняющегося рельефа: в области перехода островной дуги к океанологическому желобу или в горах. Однако много землетрясений бывает и на равнине. Так, например, на сейсмически спокойной Русской платформе за все время наблюдений зафиксировано около тысячи слабых землетрясений, большая часть из которых произошла в районах добычи нефти в Татарии.

Возможен ли прогноз землетрясений? Ответ на этот вопрос ученые ищут на протяжении многих лет. Тысячи сейсмостанций, плотно окутавших Землю, следят за дыханием нашей планеты, и целые армии сейсмологов и геофизиков, вооружившись приборами и теориями, пытаются спрогнозировать эти страшные стихийные бедствия.

Земные недра никогда не бывают спокойны. Процессы, в них происходящие, вызывают движения земной коры. Под их воздействием поверхность планеты деформируется: она поднимется и опускается, растягивается и сжимается, на ней образуются гигантские трещины. Густая сеть трещин (разломов) покрывает всю Землю, разбивая ее на большие и малые участки – блоки. По разломам отдельные блоки могут смещаться относительно друг друга. Итак, земная кора – неоднородный материал. Деформации в ней накапливаются постепенно, приводя к локальному развитию трещин.

Чтобы прогноз землетрясения был возможен, надо знать, как оно возникает. Основу современных представлений о возникновении очага землетрясения составляют положения механики разрушений. Согласно подходу основателя этой науки Гриффитса, в какой-то момент трещина теряет устойчивость и начинает лавинообразно распространяться. В неоднородном материале перед образованием крупной трещины обязательно появляются различные предваряющие этот процесс явления – предвестники. На этой стадии увеличение по каким-либо причинам напряжений в области разрыва и его длины не приводит к нарушению устойчивости системы. Интенсивность предвестников с течением времени снижается. Стадия неустойчивости – лавинообразное распространение трещины возникает вслед за уменьшением или даже полным исчезновением предвестников.

Если применить положения механики разрушений к процессу возникновения землетрясений, то можно сказать, что землетрясение - это лавинообразное распространение трещины в неоднородном материале – земной коре. Поэтому, как и в случае материала, этот процесс предваряют его предвестники, а непосредственно перед сильным землетрясением они должны полностью или почти полностью исчезнуть. Именно этот признак наиболее часто используется при прогнозировании землетрясения.

Прогноз землетрясений облегчается еще и тем, что лавинообразное образование трещин происходит исключительно на сейсмогенных разломах, где они уже неоднократно происходили ранее. Так что наблюдения и измерения с целью прогнозирования ведут в определенных зонах согласно разработанным картам сейсмического районирования. Такие карты содержат сведения об очагах землетрясений, их интенсивности, периодах повторяемости и т.д.

Предсказание землетрясений обычно ведется в три этапа. Сначала выявляют возможные сейсмически опасные зоны на ближайшие 10-15 лет, затем составляют среднесрочный прогноз – на 1-5 лет, и если вероятность землетрясения в данном месте велика, то проводится краткосрочное прогнозирование.

Долгосрочный прогноз призван выявить сейсмически опасные зоны на ближайшие десятилетия. В его основе лежит изучение многолетней цикличности хода сейсмотектонического процесса, выявление периодов активизации, анализ сейсмических затиший, миграционных процессов и т.д. Сегодня на карте земного шара очерчены все области и зоны, где в принципе могут случиться землетрясения, а значит, известно, где нельзя строить, например, атомные электростанции и где надо строить сейсмостойкие дома.

Среднесрочный прогноз базируется на выявлении предвестников землетрясений. В научной литературе зафиксировано более сотни видов среднесрочных предвестников, из которых около 20 упоминается наиболее часто. Как отмечалось выше, перед землетрясениями появляются аномальные явления: исчезают постоянные слабые землетрясения; меняются деформация земной коры, электрические и магнитные свойства пород; падает уровень подземных вод, снижается их температура, а также меняется их химический и газовый состав и др. Сложность среднесрочного прогнозирования состоит в том, что эти аномалии могут проявляться не только в зоне очага, и поэтому ни один из известных среднесрочных предвестников нельзя отнести к универсальным.

Но человеку важно знать, когда и где конкретно ему грозит опасность, то есть нужно предсказание события за несколько дней. Именно такие краткосрочные прогнозы пока составляют для сейсмологов главную трудность.

Основной признак грядущего землетрясения – исчезновение или уменьшение среднесрочных предвестников. Существуют и краткосрочные предвестники – изменения, происходящие вследствие уже начавшегося, но пока еще скрытого развития крупной трещины. Природа многих видов предвестников еще не изучена, поэтому приходится просто анализировать текущую сейсмическую обстановку. Анализ включает измерение спектрального состава колебаний, типичность или аномальность первых вступлений поперечных и продольных волн, выявление тенденции к группированию (это называют роем землетрясений), оценку вероятности активизации тех или иных тектонически активных структур и др. Иногда в качестве природных индикаторов землетрясения выступают предварительные толчки – форшоки. Все эти данные могут помочь спрогнозировать время и место будущего землетрясения.

По данным ЮНЕСКО, такая стратегия уже позволила предсказать семь землетрясений в Японии, США и Китае. Наиболее впечатляющий прогноз был сделан зимой 1975 года в городе Хайчэн на северо-востоке Китая. Район наблюдали в течение нескольких лет, возрастание числа слабых землетрясений позволило объявить всеобщую тревогу 4 февраля в 14 часов. А в 19 часов 36 минут произошло землетрясение силой более семи баллов, город оказался разрушенным, но жертв практически не было. Эта удача очень обнадежила ученых, однако за ней последовал ряд разочарований: предсказанные сильные землетрясения не произошли. И на сейсмологов посыпались упреки: объявление сейсмической тревоги предполагает остановку многих промышленных предприятий, в том числе непрерывного действия, отключение электроэнергии, прекращение подачи газа, эвакуацию населения. Очевидно, что неверный прогноз в этом случае оборачивается серьезными экономическими потерями.

Тем не менее ученые вынуждены признать, что главная задача сейсмологии еще не решена. Можно говорить лишь о тенденциях развития сейсмической обстановки, но редкие точные прогнозы вселяют надежду, что в недалеком будущем люди научатся достойно встречать одно из самых грозных проявлений силы природы.

Землетрясения – это подземные толчки, которые вызывают колебания земной поверхности. Эти толчки связаны с подвижками в земных оболочках: земной коре или в верхней мантии. Смещения в недрах порождают сейсмические волны – колебания, которые распространяются в земной коре, подкоровой литосфере и в мантии Земли.

Десятки землетрясений происходят на Земле каждый день. Но чаще всего это слабые и умеренные события, которые не ощущаются на поверхности. Землетрясения магнитудой от 4 до 5 не вызывают больших разрушений, но фиксируются сейсмическими сетями. Землетрясений с магнитудой около 6-7 происходит несколько сотен в год. Магнитуда 8 встречается порядка десяти раз за год. Самые разрушительные землетрясения с магнитудой 9 происходят примерно раз в 30 лет.

Ученым известны землетрясения, которые происходили еще в Древнем Риме, Древнем Китае и в Средние века. Люди, попадавшие в зону землетрясений, записывали свои впечатления о них. Но в Средние века еще не было никаких сейсмических приборов. Люди описывали то, что они видели: оползни, разломы на склонах гор и разрушение зданий. Таким образом, было описано Лиссабонское землетрясение 1 ноября 1755 года, которое разрушило столицу Португалии и привело к многочисленным человеческим жертвам.

Первые сейсмографы были изобретены в Китае около 2 тысяч лет назад. Китайские сейсмографы представляли собой бронзовый кувшин, на котором по краям сидели драконы, а внизу, у подножья, его окружали лягушки. У драконов во рту были шарики. Если начинались колебания, шарики вываливались в ту сторону, откуда пришли колебания, и попадали в открытую пасть соответствующей лягушки.

Сейсмографы, похожие на современные, стали использоваться в начале XX века. Российский академик Борис Борисович Голицын изобрел один из первых сейсмографов еще до революции. Его прибор послужил прообразом современных сейсмографов. В первые десятилетия XX века был установлен ряд сейсмических станций в разных странах. Англия занимала лидирующее положение, так как многие ее колонии, такие как Индия, находились в зоне сейсмической опасности.

В России первые сейсмографы стали устанавливать в основном в европейской части, на Кавказе и Урале. А Германия была одним из передовиков в изучении сейсмичности экспериментальными методами. Обычно сейсмограф представлял собой пружинку (датчик), которая при подходе сейсмической волны начинала колебаться и тянула за собой стрелку, показывавшую размах колебаний. При этом колебания фиксировались по определенной шкале. У современных сейсмографов механическая часть осталась прежней, но на смену стрелочному механизму пришли компьютерные технологии. Идея сейсмографа состоит в том, что сейсмическая волна при подходе к поверхности вызывает колебания датчика сейсмографа и прибор записывает эти колебания в определенной системе фиксации.

Причины землетрясений

Земля – космическое тело, в глубине которого происходят процессы дифференциации материи, переплавление внутреннего вещества. При этом холодный материал в недрах Земли тонет, а теплый материал поднимается вверх. Это вызывает напряжения в земной коре. Толщина земной коры – 7-10 километров в океане и 40-60 километров на континенте. Под воздействием внутренних напряжений Земли происходит накопление напряжений в литосфере и на поверхности. Эти напряжения разряжаются трещинами и подвижками, которые запускают сейсмические волны.

В последнее время ученые также выдвигают идею о том, что в результате плавления и дифференциации материи в глубине Земли происходят существенные горизонтальные движения в верхних горизонтах коры и на поверхности. Тектонические плиты движутся, на их границах образуются зоны сжатия, накопления напряжений, и в этих зонах происходит 90% сейсмичности Земли.

Накопление напряжений, которое происходит из-за внутренней дифференциации вещества, по механизму похоже на то, как люди варят кашу: внутреннее вещество нагревается, и на поверхность постепенно всплывают пузыри, вызывающие горизонтальные смещения на поверхности. Также и Земля начинает «бурлить», снизу всплывает горячее вещество, сверху тонет холодное. При этом близ поверхности Земли возникают напряжения, вызывающие разрывы.

Накопленные напряжения во внутреннем веществе концентрируются в области какой-то структуры, например разлома земной коры или большой трещины. Затем эта трещина постепенно накапливает напряжения, и по ней проходит моментальная подвижка. Смещаются края трещины, это вызывает колебания, которые представляют собой сейсмические волны. После разрушения зоны, когда возник очаг землетрясения, начинается процесс стабилизации. Все, что было разрушено вокруг, начинает приспосабливаться к новым условиям напряжений. Возникают повторные толчки, или афтершоки, которые могут длиться месяцы и даже годы, прежде чем зона успокоится.

Классификация землетрясений

Землетрясения отличаются друг от друга по многим свойствам. Они различаются по магнитуде – математической величине, которая характеризует энергию очага. Кроме того, они различаются по интенсивности, то есть по реакции поверхности на приход сейсмических волн. Другие характеристики связаны с сейсмотектонической приуроченностью. Например, есть внутриплитные и межплитные землетрясения. По периферии Тихого океана расположено сейсмическое «огненное кольцо». Если посмотреть на карту, то можно увидеть, что весь Тихий океан опоясан активными зонами: Кордильеры, Анды, Камчатка, Япония, Курильские острова и так далее.

Эта периферия охвачена сейсмическими процессами. Там концентрируется примерно 60% сейсмичности Земли. Второй крупнейшей сейсмоактивной структурой является Альпийско-Гималайский подвижный пояс, идущий от Альп к Индийскому океану через Кавказ, зоны Центральной Азии, Иран, север Индии. В нем концентрируется 20% землетрясений. Менее сейсмоактивны срединные океанические хребты: Атлантический, Гаккеля, Тихоокеанский. Тут происходит примерно 10% сейсмических толчков. Остальные зоны внутриплитной сейсмичности генерируют не более 10% событий.

Для полноценного сейсмического прогноза необходимо предсказывать место, время землетрясений и их силу. Прогноз может быть долгосрочным, среднесрочным, краткосрочным в зависимости от того, на какой период предсказываются эти события. Во всех случаях базовый подход – это оценка сейсмической опасности региона. При этом подходе ученые предсказывают не землетрясение, а общий уровень сейсмической опасности какой-либо территории. В этом случае неизвестно, когда именно произойдет конкретное землетрясение, но можно спрогнозировать, в каком месте оно произойдет, с какой вероятностью и какие вызовет разрушения.

Например, для России, как и для всех развитых стран, существует карта общего сейсмического районирования. На ней обозначены все зоны, которые могут породить землетрясения, указаны их максимальные магнитуды и рассчитаны все максимальные воздействия в баллах. Таким образом, мы знаем территорию с точки зрения уровня возможных землетрясений и их ущерба.

Кроме того, есть уровень детального сейсмического районирования. Если вы строите какие-либо ответственные объекты, то нужно учитывать местные сейсмические условия, то есть систему разломов, известную сейсмичность, посчитать воздействия и прочее. Это делается при строительстве зданий повышенной ответственности, трубопроводов, мостов и так далее. Оценка сейсмической опасности не делается для определенного периода времени. Хотя периоды и учитываются, они очень большие – 500-1000 лет.

Помимо оценки сейсмической опасности, сейсмологи разрабатывают и прогнозы. Долгосрочный прогноз охватывает десятилетия. Например, можно предсказать, что на Камчатке в течение 10 лет возможно землетрясение с магнитудой 8. Среднесрочный прогноз охватывает период около года. Краткосрочный прогноз предсказывает землетрясение в ближайшие дни и часы. Точность этих прогнозов постепенно ухудшается. Если долгосрочный и среднесрочный прогнозы можно как-то обосновать по ходу текущей сейсмичности, геодинамическим проявлениям, деформациям поверхности, колебаниям уровня грунтовых вод, аномалиям геофизических полей, то краткосрочные прогнозы крайне редко бывают удачными. В настоящий момент наука и техника еще не доросли до уровня, когда можно делать устойчивый краткосрочный прогноз. Среднесрочный и долгосрочный прогнозы более перспективны.

При прогнозировании землетрясений почти всегда учитывается ход фоновой сейсмичности. Например, мы наблюдаем за каким-то регионом и видим, что там изменяется стандартный уровень сейсмичности. Если на Кавказе, к примеру, регулярно происходят слабые землетрясения, а потом наступает на несколько месяцев сейсмическое затишье, то это может являться предвестником прогнозируемого сильного сейсмического события. Кроме того, используются системы GPS, ГЛОНАСС. Мы видим направление и скорость движений поверхности, изменения которых, а также вариации геофизических полей могут служить основанием для среднесрочного прогноза. Если мы наблюдаем резкие изменения теплового, гравитационного, магнитного полей, то можем считать их предвестниками землетрясений. В целом сейсмологи, являющиеся специалистами по прогнозу, используют более 200 различных подходов для предсказания землетрясений.

Сила землетрясений измеряется их магнитудой. Магнитуда показывает отклонение стрелки сейсмографа на какую-либо величину на расстоянии 100 километров от эпицентра землетрясения. Магнитуда по Рихтеру является характеристикой энергии землетрясения, которая выделяется в очаге. Помимо магнитуды, существует балльность – то, что происходит на поверхности в том или ином месте. Очаг землетрясения – это объем массы в недрах Земли, в земной коре или в верхней мантии, который порождает сейсмические волны и сотрясения.

Землетрясения – это естественное дыхание Земли. Они происходили на протяжении всей истории развития земного шара. Землетрясения не пагубны для природы на Земле, но наносят ущерб человеку, разрушая здания и сооружения и приводя к человеческим жертвам.

В настоящий момент ученые иногда обсуждают возможность предотвращения землетрясений. Один из предлагаемых вариантов – узнать разлом, в зоне которого готовится землетрясение, и закачивать туда через скважины воду: вода будет представлять собой смазку, и подвижка будет не такой сильной. Другое предложение – устраивать взрывы в районе готовящегося очага землетрясения, для того чтобы очаг реализовался на более ранней стадии созревания и сейсмический толчок не был таким сильным. Однако мы никогда не знаем точно, где именно будет очаг зреющего землетрясения, и можем только предполагать положение таких мест. Кроме того, такие работы требуют огромных затрат, для этого нужно значительное финансирование.

Таким образом, перспективным направлением в борьбе с негативными последствиями сильных землетрясений является продолжение исследований по оценке сейсмической опасности, долгосрочному и среднесрочному прогнозированию. Краткосрочный прогноз – для будущего.

Земле присуще одно прискорбное свойство: она временами уходит из-под ног, и не всегда это связано с результатами бодрой вечеринки в дружеском кругу. От сотрясений почвы встает дыбом асфальт, рушатся дома. Да что там дома?! – катастрофические землетрясения могут вздымать или разрушать горы, осушать озера, разворачивать реки. Жителям домов, гор и побережий в таких ситуациях остается только одно: пытаться уцелеть, насколько это окажется возможным.

Люди сталкивались с буйством земной тверди примерно с тех времен, когда спустились на эту твердь с деревьев. Видимо, к началу человеческой эпохи относятся и первые попытки объяснить природу землетрясений, в которых обильно фигурируют подземные боги, демоны и прочие псевдонимы тектонических движений. По мере того как наши предки обзаводились постоянным жильем с прилагаемыми к нему крепостями и курятниками, урон от сотрясений почвы под. ними становился больше, а желание задобрить Вулкана или хотя бы предсказать его немилость – сильнее.

Впрочем, разные страны в древности сотрясались разными сущностями. Японская версия отводит ведущую роль живущим под. землей гигантским сомам, которые иногда шевелятся. В марте 2011 года очередное рыбье буйство привело к сильнейшему землетрясению и цунами.

Земная кора находится в очень медленном, но непрерывном движении. Громадные блоки напирают друг на друга и деформируются. Когда напряжения превышают предел прочности, деформация становится неупругой – земная твердь ломается, а пласты смещаются вдоль разлома с упругой отдачей. Впервые эту теорию предложил почти сто лет назад американский геофизик Гарри Рейд, изучавший землетрясение 1906 года, почти полностью разрушившее Сан-Франциско. С тех пор учеными было предложено множество теорий, по-разному детализирующих ход событий, но первооснова осталась в общих чертах той же.

Многообразие версий, увы, не увеличивает объем знаний. Известно, что очаг (по-научному – гипоцентр) землетрясения представляет собой протяженную область, в которой и происходит разрушение горных пород с выделением энергии. Ее объемы прямо связаны с размерами гипоцентра – чем он больше, тем сотрясения сильнее. Очаги разрушительных землетрясений простираются на десятки и сотни километров. Так, очаг Камчатского землетрясения 1952 года имел длину около 500 километров, а Суматранского, вызвавшего в декабре 2004 года самое страшное в современной истории цунами, – не менее 1300 километров.

Размеры гипоцентра зависят не только от накопленных в нем напряжений, но и от физической прочности горных пород. Каждый отдельный пласт, оказавшийся в зоне разрушения, может как треснуть, увеличивая масштаб события, так и устоять. Конечный результат в итоге оказывается зависимым от множества невидимых с поверхности факторов.

Сейсмическое районирование территории позволяет предсказать силу возможных в данном месте подземных толчков, пусть даже и без указания точных места и времени. Полученную карту можно сравнить с климатической, вот только вместо атмосферного климата на ней отображен сейсмический – оценка возможной в данном месте силы землетрясения.

Исходной информацией служат данные о сейсмической активности в прошлом. К сожалению, история инструментальных наблюдений за сейсмическими процессами насчитывает немногим более ста лет, а во многих регионах – того меньше. Некоторую помощь может оказать сбор данных из исторических источников: описаний даже античных авторов обычно достаточно, чтобы определить балльность землетрясения, поскольку соответствующие шкалы построены на основе бытовых последствий – разрушения зданий, реакции людей и т.п. Но и этого, конечно, недостаточно – человечество еще слишком молодо. Если в каком-то регионе за последние пару тысяч лет не было десятибалльного землетрясения, это еще не значит, что оно не произойдет там в следующем году. Пока речь идет о рядовом малоэтажном строительстве, с риском такого уровня можно мириться, но размещение АЭС, нефтепроводов и прочих потенциально опасных объектов требует явно большей точности.

Проблема оказывается решаемой, если от отдельных землетрясений перейти к рассмотрению потока сейсмических событий, характеризующегося определенными закономерностями, в том числе плотностью и повторяемостью. В этом случае можно установить зависимость периодичности землетрясений от их силы. Чем слабее землетрясения, тем больше их количество. Эта зависимость поддается анализу математическими методами, и, установив ее для какого-то промежутка времени, пусть небольшого, но обеспеченного инструментальными наблюдениями, можно с достаточной надежностью экстраполировать ход событий через сотни и даже тысячи лет. Вероятностный подход позволяет накладывать приемлемые по точности ограничения на масштабы будущих катастроф.

Сейсмическое районирование дает возможность понять, где «подложить соломку». Но, чтобы свести урон к минимуму, хорошо бы знать время и место события точно – кроме оценки «климата» иметь и прогноз «погоды».

Накапливающиеся в земной толще напряжения приводят к изменениям ее свойств, и их в большинстве случаев вполне можно «поймать» приборами. Таких изменений – сейсмологи называют их предвестниками – на сегодня известно несколько сотен, и их перечень год за годом растет. Нарастающие напряжения земли изменяют скорость упругих волн в них, электропроводность, уровень подземных вод и т.д.

Проблема заключается в том, что предвестники капризны. Они ведут себя по-разному в разных регионах, представая перед исследователями в разных, подчас причудливых сочетаниях. Чтобы уверенно сложить «мозаику», надо знать правила ее составления, но полной информации у нас нет и не факт, что когда-то будет.

Исследования 1950-1970-х показали корреляцию содержания радона в подземных водах в районе Ташкента с сейсмической активностью. Содержание радона перед землетрясениями в радиусе до 100 километров изменялось за 7-9 дней до толчка, вначале увеличиваясь до максимума (за пять дней), а затем снижаясь. Но аналогичные исследования в Киргизии и на Тянь-Шане устойчивой корреляции не показали.

Упругие деформации земной коры приводят к относительно быстрому (месяцы и годы) изменению высоты местности. Эти изменения уже давно и надежно «ловятся». В начале 1970-х американские специалисты выявили поднятие поверхности возле городка Палмдейл в Калифорнии, стоящего прямо на разломе Сан-Андреас, которому штат обязан репутацией сейсмически беспокойного места. На попытки отследить развитие событий и вовремя предупредить были брошены немалые силы, деньги и оборудование. К середине 1970-х подъем поверхности вырос до 35 сантиметров. Было отмечено также уменьшение скорости упругих волн в земной толще. Наблюдения за предвестниками продолжались много лет, стоили немалых долларов, но… катастрофы не произошло, состояние местности постепенно вернулось к норме.

В последние годы наметились новые подходы к прогнозированию, связанные с рассмотрением сейсмической активности на глобальном уровне. В частности, о прогностических успехах сообщали камчатские сейсмологи, традиционно находящиеся на «переднем крае» науки. Но отношение к прогностике ученого мира в целом все же будет правильнее охарактеризовать как осторожный скептицизм.

10 правил выживания при землетрясении

1) Каждый, кто пригнулся и укрылся в разрушающемся здании или машине будет ранен или погибнет.

2) Кошки, собаки и младенцы часто принимают естественную утробную позу. Это то, что нужно сделать при землетрясении. Это инстинкт. Это положение помогает поместиться в маленькой полости. Придвиньтесь ближе к крупному, громоздкому объекту, который, будучи раздавлен, сплющен, все же оставит некоторое пространство для выживания.

3) Деревянные здания самые безопасные во время землетрясений. Дерево хорошо работает на изгиб и кручение под действием сейсмической волны. Если деревянное здание все же рушится, оно образует большие полости спасения и не причиняет больших ранений. Кирпичные здания разрушаются на отдельные кирпичи. Кирпичи причиняют значительные ранения, но все же меньше, чем бетонные. Бетонные панельные здания самые опасные во время землетрясений.

4) Если землетрясение застало вас ночью в постели, просто скатитесь с кровати. Самое безопасное место будет вокруг кровати. В отелях многие жизни могут быть спасены, если на двери каждого номера будет висеть инструкция, предписывающая посетителям лечь на пол рядом с днищем кровати во время землетрясения.

5) Если землетрясение случилось, и вы не можете выбежать ни через дверь, ни через окно, лягте на пол в позе утробного младенца рядом с кроватью или большим креслом.

6) Почти каждый, кто стоял в дверном проеме в падающем здании, погиб. Как? Если стоять под дверной перемычкой, то когда обрушится дверной косяк, вы будете разрушены вместе с ним.

7) Никогда не стойте во время землетрясения на ступенях. Ступени имеют отдельный момент кручения, отличный от каркаса здания. Ступени и остальные обломки здания, постоянно сталкиваясь, просто перемалывают человека, находящегося внутри этой бойни. Даже если здание не коллапсирует, не оставайтесь на ступенях. Даже если ступени целы, они могут быть разрушены под наплывом множества людей и должны быть сначала проверены.

8) Если это возможно, лучше находиться возле наружных стен внутри или снаружи здания. Лучше снаружи, чем внутри. Чем дальше от наружной стены вы будете находиться внутри здания, тем меньше у вас шансов выскочить наружу.

9) Люди внутри транспортных средств погибают, если на них обрушиваются дороги верхнего уровня. Почти все жертвы землетрясения в Сан-Франциско, находились внутри транспортных средств. Если бы они сидели или лежали рядом с транспортными средствами они были бы спасены. Каждая разрушенная машина имеет рядом с собой полость безопасности 3 фута высотой, за исключением случаев, когда прямо на машину падала колонна.

10) По опыту проникновения в газетный офис стало ясно, что кипы бумаги образуют наибольшие полости безопасности.

В результате землетрясения в Индийском океане 2004 года и последовавшего за ним цунами погибли и пропали без вести до 300000 человек. Однако на индонезийском острове Симёлуэ, который находился ближе всего к эпицентру, из 80000 населения жертвами стали всего семеро. Волна пришла на остров через 15 минут после толчков, но к тому времени почти все жители организованно взобрались на возвышенности. Это стало возможным благодаря фольклору – колыбельным, стишкам, историям – возникшим после подобного цунами 1907 года, унесшим жизни более половины островитян. Из поколения в поколение жители в различных формах передавали детям простое наставление: если землю трясёт, после чего вода убывает, нужно бросить всё и бежать вверх.

В 1958 году было зафиксировано мощное землетрясение на Аляске, сопровождавшееся оползнем 30 миллионов кубометров горных пород и льда в залив Литуйя. Это вызвало так называемое мегацунами – волну высотой 524 метра, самую высокую из зафиксированных человечеством, которая обрушилась на прилегающие к морю горы. Из-за малонаселённости района число погибших ограничилось только пятью. Похожий оползень на плотине Вайонт в Италии в 1963 году поднял волну высотой 250 метров, которая разрушила несколько деревень и унесла жизни более двух тысяч человек.

Сразу после землетрясения сейсмографы регистрируют его магнитуду, которую измеряют по шкале от 1 до 9 условных единиц, также называемой шкалой Рихтера. Только спустя время оценивается интенсивность землетрясения, измеряемая по его воздействию на людей, строения, природные объекты и исчисляемая в баллах по 12-балльной шкале, никак не связанной с магнитудой. Поэтому фразы вида «землетрясение магнитудой 6 баллов» в корне неправильны.

В 1693 году при извержении вулкана Этны на Сицилии произошло мощное землетрясение, полностью разрушившее многие дворцы, церкви и целые города. При их восстановлении архитекторы получили шанс привнести в господствовавший в то время стиль барокко новые черты и краски, что привело к созданию нового уникального стиля, названного сицилийским барокко.

Обычно гигантские маятники устанавливаются в больших башенных часах. А вот 660-тонный стальной маятник в тайваньском небоскрёбе Тайбэй 101 выполняет другую роль – инерционного демпфера колебаний. Он расположен между 87 и 91 этажами 101-этажного здания общей высотой более 500 метров и служит для снижения опасности обрушения при землетрясении или урагане.

Самые страшные землетрясения в истории

1556: провинция Шэньси, Китай. Самое катастрофическое землетрясение в истории (его еще называют «Великим Китайским»), магнитуда, по предположениям современных сейсмологов и историков – 11. Разрушена территория в 520 квадратных миль. Жители провинции предпочитали жить в пещерах в лессовых холмах, в момент землетрясения произошел оползень, и все жители оказались в этих пещерах погребены. Общее количество жертв – 830000.

1692: землетрясение на Ямайке. Город Порт-Ройял разрушен и затоплен. 5000 жителей погибли.

1693: землетрясение на Сицилии в результате извержения Этны. Погибло, по разным оценкам, от 60000 до 100000 человек (в том числе две трети жителей города Катанья), разрушены 45 городов и сел. Пострадала также Мальта. Единственное, чем можно утешиться – при постройке новых зданий взамен разрушенных расцветает стиль сицилийского барокко.

1700: землетрясение предположительно с магнитудой 9,0 основательно трясет те районы Америки, где сейчас находятся Северная Калифорния, Орегон, штат Вашингтон и Британская Колумбия. Цунами уничтожает несколько деревень в Японии.

1730: 3000 человек из города Вальпараисо (Чили) погибают в результате землетрясения с магнитудой 8,7.

1737: землетрясение в Калькутте. Погибли 300000 человек.

1755: землетрясение вблизи Лиссабона, практически полностью разрушившее португальскую столицу и погубившее, по разным оценкам, от 60000 до 100000 человек. Магнитуда 8,7.

1783: землетрясение в итальянском регионе Калабрия. От 30 до 60000 погибших.

1868: землетрясение в Перу (9,0) и последовавшие цунами уносят жизни 25000 человек.

1897: землетрясение в Ассаме (Индия). Разрушены каменные здания на площади почти в 400000 квадратных километров.

1920: в провинции Ганьсу (Китай) землетрясение губит 200000 человек.

1923: катастрофическое землетрясение в 90 километров от Токио практически уничтожает этот город – а заодно Иокогаму. Погибают свыше 140000 человек.

1927: китайская провинция Нян-Сян. Около 50000 жертв.

1939: турецкий город Эрзинджан. 100000 жертв.

1946: землетрясение близ острова Унимак (Аляска) порождает цунами, докатившееся до Гавайских островов и погубившее 165 человек.

1948: Ашхабадское землетрясение, магнитудой около 10,0, самое разрушительное в истории СССР. Город практически уничтожен, половина жителей мертвы, общее количество жертв – 110000.

1950: землетрясение на Тибете (8,6). 780 жертв.

1952: землетрясение на Камчатке (9.0) До Гавайских островов докатываются 10-метровые волны, однако сообщений о жертвах нет.

1960: Великое Чилийское землетрясение (9,5). Около 6000 жертв.

1964: Аляска, магнитуда – 9,2, 131 жертва (из них 128 погибли в результате цунами).

1966: землетрясение разрушает центральную часть Ташкента. Без крова остаются 300000 человек.

1976: землетрясение магнитудой 8,0 происходит близ островов Минданао и Сулу (Филиппины). 5000 жертв.

1976: одно из самых страшных землетрясений в истории – в Китае (город Таншань). Магнитуда – 8,2. 230000 жертв.

1988: уничтожен армянский город Спитак, погибло 25000 человек.

2004: в Индийском океане происходит землетрясение магнитудой 9,0. В различных странах (Шри-Ланка, Индонезия, Таиланд, Сомали, Мальдивы) от цунами погибают 230000 человек. Волны достигают даже Мексики, Чили и ЮАР.

2005: землетрясение в Пакистане уносит уносит жизни 84000 человек.

2010: землетрясение магнитудой 8,8 и цунами уносят жизни 524 чилийцев.

2010: Гаити. 232000 человек. Самое страшное по количеству жертв землетрясение современности, сопоставимое только с китайским 1976 года и землетрясением в Индийском океане 2004-го.

Категория: Природа | Добавил: laf2304 (03.01.2019)
Просмотров: 311 | Рейтинг: 0.0/0
Всего комментариев: 0
avatar
[ Категории раздела ]
Космос [285]
Природа [295]
Общество [298]
Технологии [284]
Загадки Вселенной [330]
Разное [245]

[ Поиск ]

[ Вход на сайт ]

[ Статистика ]

Онлайн всего: 2
Гостей: 2
Пользователей: 0

Copyright ARA © 2025
uCoz