Величайший астроном-наблюдатель Вильям Гершель, создавая в XVIII веке первую карту нашей Галактики, предполагал, что все звезды одинаковы, а различия в их видимом блеске связаны исключительно с разной удаленностью от Солнца. В полной мере осознать несправедливость этого предположения удалось лишь к концу XIX началу XX века, когда начались массовые определения расстояний до звезд. Современные же представления о звездах сформировались лишь к середине XX века. Конкретно, в 1920-1930-е годы выяснилось, что звезды состоят главным образом из водорода и что наиболее подходящим механизмом энерговыделения в звездах являются термоядерные реакции превращения водорода в гелий.
Термоядерные реакции, как следует из самого их названия, требуют высокой температуры, а температура в ядре звезды, где располагается «термоядерный реактор», обеспечивается массой: чем сильнее звезда сжимается под собственным весом, тем сильнее разогреваются ее недра.
Скорость термоядерных реакций очень сильно зависит от температуры, поэтому массивные звезды стремительно расходуют запасы водорода и живут недолго (миллионы или десятки миллионов лет). Звезды же малых масс (порядка солнечной и ниже) относительно холодны и снаружи, и внутри, и потому превращение водорода в гелий в них идет весьма унылыми темпами и может продолжаться десятки и сотни миллиардов лет.
Ответы на очень многие астрономические вопросы зависят от того, как звезды распределены по массам, точнее, по начальным массам, поскольку в процессе эволюции масса звезды так или иначе меняется (чаще в сторону убывания). По современным представлениям, распределение звезд по начальным массам – начальная функция масс (НФМ) – описывается убывающим степенным законом для звезд с массой порядка солнечной и выше и чем-то логнормальным в области меньших масс. У НФМ есть верхний предел (максимальная масса звезд), равный, по-видимому, 100–200 солнечным массам и связанный с тем, что массивные звезды раздувают сами себя собственным излучением.
Ситуация с нижним пределом (минимальная масса) более сложная. Во-первых, маломассивные объекты сложнее обнаруживать и потому существенно сложнее достоверно пересчитать. Во-вторых, переходя в область малых масс, мы рано или поздно сталкиваемся с объектами, массы (= температуры) которых слишком малы для загорания термоядерных реакций. Ничто не запрещает таким объектам образовываться и существовать; они просто не будут звездами.
Отправной точкой в изучении таких субзвездных объектов считаются работы Шива Кумара (Shiv S. Kumar), опубликованные в 1962–1963 годах. В них он указал, что сжатие газового сгустка заканчивается формированием устойчивой конфигурации без загорания термоядерных реакций, если масса сгустка не превосходит 0,07– 0,09 массы Солнца. Сам Кумар называл такие «недозвезды» черными карликами, однако с 1975 года за ними закрепилось другое название – коричневые (или бурые) карлики.
Коричневые карлики оставались гипотетическими объектами до середины 1990-х годов, когда развитие наблюдательной техники наконец достигло уровня, необходимого для обнаружения столь тусклых объектов. Дело в том, что коричневые карлики, так и не обзаведшиеся внутренним источником энергии, светятся лишь за счет накопленного при сжатии тепла. Невысокая температура (примерно от 2500К до сотен К) в сочетании с небольшим размером приводят к очень низкой светимости, да и то только пока карлик находится в относительно юном возрасте. Неудивительно, что первое сообщение о подтвержденном открытии коричневого карлика (Teide 1), опубликованное в сентябре 1995 года, относилось к объекту в молодом звездном скоплении Плеяды.
Сейчас количество известных коричневых карликов перевалило уже за тысячу, а полное их количество в Галактике как минимум сопоставимо с количеством «нормальных» звезд. Причем, если массы первых обнаруженных коричневых карликов были лишь незначительно ниже предела Кумара, то теперь известны субзвездные объекты, по массе уступающие Юпитеру.
Практически одновременно с открытием коричневых карликов в том же 1995 году было представлено еще одно значимое открытие – первая экзопланета у «нормальной» звезды. Теперь количество известных (и подтвержденных) экзопланет приближается к двум тысячам, и их массы тоже весьма разнообразны. В частности, среди них нередки планеты, массы которых в разы превосходят массу Юпитера. Иными словами, диапазоны масс планет и коричневых карликов существенно перекрываются.
Возникает естественный вопрос: а чем вообще планеты и коричневые карлики отличаются друг от друга? И те и другие имеют сходные (по крайней мере, перекрывающиеся) массы, и те и другие состоят главным образом из водорода, в спектрах атмосфер и тех и других обнаруживаются признаки значительного количества молекул...
Сейчас для разделения субзвездных объектов на планеты и коричневые карлики принят условный массовый порог – 13 масс Юпитера. При массе выше этого предела в объекте на самом раннем этапе его существования все-таки могут короткое время идти термоядерные реакции, но с участием не водорода, а дейтерия.
Дело в том, что первый, самый медленный шаг в стандартной протон-протонной цепочке превращения водорода в гелий представляет собой именно формирование дейтерия. Если дейтерий в газе уже есть (а он есть, остался после Большого взрыва), для его превращения в гелий достаточно и менее высокой температуры, поэтому дейтерий способен гореть в объектах существенно меньшей массы. Но, увы, дейтерия мало, и потому эти реакции быстро заканчиваются. Так вот, предельно малое значение массы для загорания дейтерия – именно 13 масс Юпитера. Но понятно, что это разделение ничего не говорит о том, по какому сценарию – «звездному» или «планетному» – образовался объект.
На первый взгляд вопрос о сценарии выглядит надуманным. Казалось бы, разница очевидна: планеты обращаются вокруг звезд, тогда как коричневые карлики представляют собой самостоятельные объекты, по сути, продолжение звездной НФМ в субзвездную область. Однако где гарантия, что «планета» с массой, скажем, 20 масс Юпитера (такие есть) образовалась именно как планета, а не как компонент двойной системы?
С другой стороны, есть и сценарии эволюции планетных систем, в которых некоторые планеты в результате взаимодействия со своими компаньонами выбрасываются из системы и отправляются в свободный полет. То есть теперешняя изоляция «коричневого карлика» с массой порядка массы Юпитера (и такие есть) вовсе не означает, что и родился он тоже в одиночестве.
С образованием коричневых карликов есть еще одна проблема: современные модели звездообразования зачастую предсказывают существенно меньшее количество коричневых карликов, чем их реально наблюдается. Образовать в турбулентном молекулярном облаке очень маломассивный сгусток оказывается не так-то просто. Поэтому в литературе время от времени появляются предположения о «третьем сценарии» формирования коричневых карликов, специфическом только для них.
Согласно одному из предлагаемых вариантов, коричневый карлик начинает свою жизнь как газовый сгусток в молекулярном облаке, но не успевает вырасти до звездного размера, потому что выбрасывается из облака из-за гравитационного взаимодействия с другими сгустками, которые по каким-то причинам росли (набирали массу) быстрее.
Важным признаком того, что коричневые карлики образуются именно по стандартному звездному сценарию, может стать их способность самим быть центрами планетных систем. В настоящее время планеты у коричневых карликов действительно обнаружены – около десятка. Самые массовые методы обнаружения экзопланет (лучевых скоростей и транзитный) с коричневыми карликами не работают; половина планет из этого десятка найдена при помощи микролинзирования, и еще половина была замечена на прямых изображениях.
Статистика, прямо сказать, не очень богатая, поэтому более прогрессивным представляется другой способ – исследование протопланетных дисков у коричневых карликов. Конечно, не только планеты, но и диски у субзвездных объектов обнаруживать гораздо сложнее, чем у обычных звезд, но это все-таки возможно. Вообще, протопланетные диски у звезд с массой выше предела Кумара – объекты существенно более крупные, чем сами звезды, и потому их довольно часто удается наблюдать как протяженные объекты. Однако косвенные признаки наличия диска можно получить даже в тех случаях, когда разглядеть собственно диск по каким-то причинам невозможно.
Во-первых, на существование диска указывает избыточное инфракрасное (ИК) излучение в спектре звезды: это светится не сама звезда, а пыль в диске, нагретая звездным излучением. Во-вторых, признаком наличия диска могут быть эмиссионные линии в спектре звезды (главным образом линии водорода), а также избыточное излучение в ультрафиолетовом диапазоне.
И линии, и ультрафиолетовый избыток указывают на присутствие очень горячего газа, существенно более горячего, чем поверхность звезды. Предполагается, что так проявляет себя газ, падающий на звезду – опять же из диска. По сути, аккреция вещества на звезду в данном случае является признаком ее молодости, точнее, признаком того, что формирование звезды еще не завершилось, а формирование планетной системы либо вовсе еще не началось, либо началось совсем недавно.
Нужно признать, что слово «протопланетный», прилагаемое к диску, есть некоторое забегание вперед: явных признаков образования планет в этих дисках пока никто не видел. Но косвенные свидетельства есть и в этом случае. Например, наблюдения указывают, что пыль в дисках крупнее, чем в родительских молекулярных облаках, а рост пыли как раз и есть первый шаг к образованию планет.
Все эти критерии применимы и к исследованиям коричневых карликов. Правда, находить у них диски по инфракрасному избытку сложнее, поскольку коричневые карлики, более холодные, чем звезды, обладают заметным собственным излучением в инфракрасном диапазоне. В то же самое время их диски, наоборот, более холодны. Иными словами, собственный инфракрасный спектр центрального объекта более ярок, а добавка от диска – менее значительна.
Поэтому при выявлении предполагаемых дисков у коричневых карликов наблюдатели стараются по возможности не ограничиваться только обнаружением ИК-избытка, но и дополнять его наблюдениями эмиссионных линий. Таким образом, ИК-избыток указывает на наличие диска, а эмиссионные линии – на то, что этот диск является аккреционным, то есть поставляет вещество на центральный объект.
Конечно, лучше всего наблюдать протопланетные диски и у звезд, и у коричневых карликов на длинных волнах. В инфракрасном диапазоне светится только центральная горячая часть диска, а его более значительная холодная часть излучает в субмиллиметровом и миллиметровом диапазонах. Поэтому достоверно оценить массу и размер диска можно только по длинноволновым данным.
Однако такие наблюдения существенно более сложны, чем наблюдения в оптическом и инфракрасном диапазонах, и даже для дисков у звезд выполнены лишь для нескольких объектов. У коричневых карликов же пространственно разрешенные наблюдения дисков проведены лишь для трех объектов, и делать это на сегодняшний день можно при помощи считаных инструментов, которые к тому же не жалуются на недостаток желающих на них наблюдать.
Тем не менее имеющиеся данные позволяют сделать важные выводы. Определив по инфракрасному избытку количество объектов с дисками, по ультрафиолетовому избытку и интенсивности эмиссионных линий – темп аккреции (выпадения вещества из диска на центральный объект), по наблюдениям в миллиметровом и субмиллиметровом диапазонах – массы и размеры дисков, можно определить место коричневых карликов в общей картине звездо- и планетообразования. И это место оказывается рядом со звездами.
Начнем с того, что доля коричневых карликов с дисками такая же, как и доля звезд с дисками: примерно половина. Далее, массы дисков коричневых карликов вписываются (хотя и с большим разбросом) в общую закономерность, ранее выведенную для звезд, – масса диска составляет примерно 1% от массы центрального объекта.
Темп дисковой аккреции и на звезды, и на коричневые карлики также подчиняется общей закономерности, будучи пропорциональным квадрату массы центрального объекта. Структура и размеры дисков коричневых карликов в тех редких случаях, когда их удается определить, также не выглядят чем-то из ряда вон выходящим.
В общем, по крайней мере в отношении параметров дисков звёзды и коричневые карлики кажутся представителями единого населения с общей историей образования. Причем этот вывод подтверждается не только для более массивных карликов, но и для карликов планетных масс, порядка 10 масс Юпитера. Это указывает, что даже самые мелкие коричневые карлики рождаются самостоятельно.
Со сценарием выброса из области звездообразования всё не так ясно. С одной стороны, кажется, что такое драматическое событие должно было бы оставить коричневый карлик без диска. С другой стороны, модели показывают, что маленький диск при этом может уцелеть. Правда, у всех трех дисков, размеры которых были оценены при помощи ALMA, эти размеры оказались вполне солидными, от 66 до 139 а.е., больше даже и Солнечной системы. Но, может быть, эти диски нетипичны?
Что мы сами пытаемся сделать: поскольку умеем моделировать структуру дисков и их молекулярный состав, логично попробовать найти между дисками коричневых карликов и дисками «нормальных» звезд какие-то обнаружимые отличия. Правда, проверить эти отличия в наблюдениях будет нелегко... Даже в «больших» дисках количество обнаруженных молекул пока едва перевалило за десяток, а в дисках у коричневых карликов и вовсе найдены только вода, ацетилен, углекислый газ и изомеры HCN и HNC. Однако есть надежда, что будущие наблюдения на ALMA позволят существенно расширить этот список.
Итак, отдельный класс космических тел, называемых коричневыми карликами, которые представляют собой тела, являющиеся наполовину планетами и наполовину звездами, с учетом обстоятельств их формирования. Однако от ученых долгое время ускользало понимание того, как на самом деле эти коричневые карлики формируются, потому как считалось, что они формируются либо как планеты, но не доходят до критической отметки термоядерного синтеза в своем ядре, либо как звезды, которые точно так же не доходят до аналогичной критической отметки.
Недавние открытия, сделанные в Центре астрономии Гейдельбергского университета (ZAH), могли бы дать ответ. Профессор, доктор Андреас Квирренбах и его команда из Кёнигштульской государственной обсерватории ZAH проанализировали изменения лучевой скорости звезды νОфиучи. Используя телескопы в США и Японии, астрономы Гейдельберга и другие измерили скорость звезды в течение 11 лет. Масса звезды немного больше, чем в два с половиной раза больше массы Солнца, и находится примерно в 150 световых годах от Земли в созвездии Змееносца.
Команда Гейдельберга заметила определенную закономерность в измерениях, похожую на те, что вызваны вращением планет или двойных звезд, что обычно не является чем-то необычным. Но в этом случае углубленный анализ данных выявил нечто экстраординарное: по-видимому, на орбитах νOphiuchi стоят два коричневых карлика с периодом обращения примерно 530 и 3185 дней, что ставит их в резонансную конфигурацию 6:1. Итак, коричневый карлик, ближайший к νOphiuchi, вращается вокруг своей звезды ровно шесть раз, в то время как другой, более отдаленный коричневый карлик проходит только одну орбиту.
Это открытие проливает совершенно новый свет на эволюцию коричневых карликов. Развиваются ли они исключительно как нормальные звезды в межзвездных облаках, или они могут также образовываться в так называемом протопланетном диске из газа и пыли, который окружает родительскую звезду в ранней фазе ее формирования?
«Резонанс 6:1 является ярким показателем для последнего сценария», – объясняет профессор Квирренбах. «Только тогда орбиты вновь развивающихся коричневых карликов могут приспособиться к устойчивому резонансу в течение миллионов лет». Это то, что предлагает обширный динамический анализ возможных конфигураций системы Ophiuchi, сообщает исследователь. Профессор Квирренбах подчеркивает, что эта суперпланетная система является первой в своем роде, а также первым верным признаком того, что коричневые карлики могут образовываться в протопланетном диске.
Исследователь и его команда надеются на другие подобные открытия, которые могут однажды позволить им выяснить, сколько из «провальных» звезд на самом деле являются более массивными братьями и сестрами Юпитера и Сатурна.
Результаты исследования явно указывают на то, что коричневые карлики в самом деле формируются и как планеты, и как звезды, обрастая необходимыми материалами и свойствами в протопланетном диске вокруг своей главной звезды. Таким образом, исследование становится первым в своей категории, которое явно и открыто это доказывает – что не могло не порадовать исследователей, искавших конкретные ответы на уже довольно старые вопросы, касающиеся природы формирования и развития коричневых карликов.
Астрономы не ставят экспериментов – они получают информацию с помощью наблюдений. Как сказал один из представителей этой профессии, не существует настолько длинных приборов, чтобы ими можно было дотянуться до звезд. Однако в распоряжении астрономов имеются физические законы, которые позволяют не только объяснять свойства уже известных объектов, но и предсказывать существование еще не наблюдавшихся.
В 1962 году коричневые карлики предсказал Шив Кумар, 23-летний американский астроном индийского происхождения, только что защитивший докторскую диссертацию в Мичиганском университете. Кумар назвал эти объекты черными карликами. Позднее в литературе фигурировали такие имена, как черные звезды, объекты Кумара, инфракрасные звезды, однако в конце концов победило словосочетание «коричневые карлики» (brown dwarfs), предложенное в 1974 году аспиранткой Калифорнийского университета Джилл Тартер.
Кумар шел к своему открытию четыре года. В те времена основы динамики рождения звезд уже были известны, но в деталях оставались изрядные пробелы. Однако Кумар в целом столь верно описал свойства своих «черных карликов», что впоследствии с его заключениями согласились даже суперкомпьютеры. Все-таки человеческий мозг как был, так и остается лучшим научным инструментом.
Кумара интересовали самые легкие протозвезды с массой не выше одной десятой массы нашего Солнца. Он понял, что для запуска термоядерного горения водорода они должны сгуститься до большей плотности, нежели предшественники звезд солнечного типа. Центр протозвезды заполняется плазмой из электронов, протонов (ядер водорода), альфа-частиц (ядер гелия) и ядер более тяжелых элементов.
Случается, что еще до достижения температуры поджога водорода электроны дают начало особому газу, свойства которого определяются законами квантовой механики. Этот газ успешно сопротивляется сжатию протозвезды и тем препятствует разогреву ее центральной зоны. Поэтому водород либо вообще не зажигается, либо гаснет задолго до полного выгорания. В таких случаях вместо несостоявшейся звезды формируется коричневый карлик.
Кумар вычислил, что минимальная масса нарождающейся звезды равна 0,07 массы Солнца, если речь идет о сравнительно молодых светилах популяции I, которым дают начало облака с повышенным содержанием элементов тяжелее гелия. Для звезд популяции II, возникших более 10 млрд лет назад, во времена, когда гелия и более тяжелых элементов в космическом пространстве было гораздо меньше, она равна 0,09 солнечной массы. Кумар нашел также, что формирование типичного коричневого карлика занимает около миллиарда лет, а его радиус не превышает 10% радиуса Солнца. Наша Галактика, как и другие звездные скопления, должна содержать великое множество таких тел, но их трудно обнаружить из-за слабой светимости.
Со временем эти оценки не особенно изменились. Сейчас считают, что временное возгорание водорода у протозвезды, родившейся из относительно молодых молекулярных облаков, происходит в диапазоне 0,07−0,075 солнечной массы и длится от 1 до 10 млрд лет (для сравнения, красные карлики, самые легкие из настоящих звезд, способны светить десятки миллиардов лет!). Термоядерный синтез компенсирует не более половины потери лучистой энергии с поверхности коричневого карлика, в то время как у настоящих звезд главной последовательности степень компенсации составляет 100%. Поэтому несостоявшаяся звезда охлаждается даже при работающей «водородной топке» и тем более продолжает остывать после ее заглушки.
Протозвезда с массой менее 0,07 солнечной поджечь водород вообще не способна. Правда, в ее недрах может вспыхнуть дейтерий, поскольку его ядра сливаются с протонами уже при температурах в 600−700 тысяч градусов, порождая гелий-3 и гамма-кванты. Но дейтерия в космосе немного (на 200000 атомов водорода приходится всего один атом дейтерия), и его запасов хватает всего на несколько миллионов лет. Ядра газовых сгустков, не достигших 0,012 массы Солнца (что составляет 13 масс Юпитера) не разогреваются даже до этого порога и поэтому не способны ни к каким термоядерным реакциям. Как подчеркнул профессор Калифорнийского университета в Сан-Диего Адам Бургассер, многие астрономы полагают, что именно здесь и проходит граница между коричневым карликом и планетой.
По мнению представителей другого лагеря, коричневым карликом можно считать и газовый сгусток полегче, если он возник в результате коллапса первичного облака космического газа, а не родился из газо-пылевого диска, окружающего только что вспыхнувшую нормальную звезду. Впрочем, любые подобные определения – дело вкуса.
Еще одно уточнение связано с литием-7, который, как и дейтерий, образовался в первые минуты после Большого взрыва. Литий вступает в термоядерный синтез при несколько меньшем нагреве, нежели водород, и потому загорается, если масса протозвезды превышает 0,055−0,065 солнечной. Однако лития в космосе в 2500 раз меньше, чем дейтерия, и поэтому с энергетической точки зрения его вклад совершенно ничтожен.
Что же происходит в недрах протозвезды, если гравитационный коллапс не завершился термоядерным поджогом водорода, а электроны объединились в единую квантовую систему, так называемый вырожденный ферми-газ? Доля электронов в этом состоянии увеличивается постепенно, а не подскакивает за единый миг от нуля до 100%. Однако для простоты будем считать, что этот процесс уже завершен.
Принцип Паули утверждает, что два электрона, входящие в одну и ту же систему, не могут пребывать в одинаковом квантовом состоянии. В ферми-газе состояние электрона определяется его импульсом, положением и спином, который принимает всего два значения. Это означает, что в одном и том же месте может находиться не более пары электронов с одинаковыми импульсами (и, естественно, противоположными спинами). А поскольку в ходе гравитационного коллапса электроны пакуются во все уменьшающийся объем, они занимают состояния с возрастающими импульсами и, соответственно, энергиями. Значит, по мере сжатия протозвезды растет внутренняя энергия электронного газа.
Эта энергия определяется чисто квантовыми эффектами и не связана с тепловым движением, поэтому в первом приближении не зависит от температуры (в отличие от энергии классического идеального газа, законы которого изучают в школьном курсе физики). Более того, при достаточно высокой степени сжатия энергия ферми-газа многократно превосходит тепловую энергию хаотического движения электронов и атомных ядер.
Увеличение энергии электронного газа повышает и его давление, которое также не зависит от температуры и растет куда сильнее давления теплового. Именно оно противостоит тяготению вещества протозвезды и прекращает ее гравитационный коллапс.
Если это произошло до достижения температуры поджога водорода, коричневый карлик остывает сразу же после непродолжительного по космическим масштабам выгорания дейтерия. Если прото-звезда пребывает в пограничной зоне и имеет массу 0,07−0,075 солнечной, она еще миллиарды лет сжигает водород, но на ее финал это не влияет. В конце концов квантовое давление вырожденного электронного газа столь снижает температуру звездного ядра, что горение водорода останавливается. И хотя его запасов хватило бы на десятки миллиардов лет, поджечь их коричневый карлик уже больше не сможет. Этим-то он и отличается от самого легкого красного карлика, выключающего ядерную топку, лишь когда весь водород превратился в гелий.
Профессор Барроуз отмечает и еще одно различие звезды и коричневого карлика. Обычная звезда не только не остывает, теряя лучистую энергию, но, как это ни парадоксально, нагревается. Это происходит потому, что звезда сжимает и разогревает свое ядро, а это сильно увеличивает темпы термоядерного горения (так, за время существования нашего Солнца его светимость возросла по крайней мере на четверть). Иное дело коричневый карлик, сжатию которого препятствует квантовое давление электронного газа. Вследствие излучения с поверхности он остывает, подобно камню или куску металла, хотя и состоит из горячей плазмы, как нормальная звезда.
Погоня за коричневыми карликами затянулась надолго. Даже у наиболее массивных представителей этого семейства, которые в юности испускают пурпурное свечение, температура поверхности обычно не превышает 2000К, а у тех, что полегче и постарше, порой не достигает даже 1000К. В излучении этих объектов присутствует и оптическая компонента, хоть и очень слабенькая. Поэтому для их поиска лучше всего подходит инфракрасная аппаратура высокого разрешения, которая появилась только в 1980-х годах. Тогда же начали запускать инфракрасные космические телескопы, без которых почти невозможно обнаружить холодные коричневые карлики (пик их излучения приходится на волны длиной 3−5 микрометров, которые в основном задерживаются земной атмосферой).
Именно в эти годы появились сообщения о возможных кандидатах. Поначалу такие заявления не выдерживали проверки, и реальное открытие первой из предсказанных Шивом Кумаром псевдозвезд состоялось лишь в 1995 году. Пальма первенства здесь принадлежит группе астрономов, возглавляемой профессором Калифорнийского университета в Беркли Гибором Басри. Исследователи изучали чрезвычайно тусклый объект PPl 15 в удаленном примерно на 400 световых лет звездном скоплении Плеяды, который ранее обнаружила группа гарвардского астронома Джона Стауффера. По предварительным данным, масса этого небесного тела составляла 0,06 массы Солнца, и он вполне мог оказаться коричневым карликом. Однако эта оценка была весьма приблизительной, и на нее нельзя было полагаться. Профессор Басри и его коллеги смогли решить эту задачу с помощью литиевой пробы, которую незадолго до того придумал испанский астрофизик Рафаэль Реболо.
«Наша группа работала на первом 10-метровом телескопе гавайской обсерватории имени Кека, который вступил в действие в 1993 году, – вспоминает профессор Басри. – Мы решили воспользоваться литиевой пробой, поскольку она давала возможность различить коричневые карлики и близкие к ним по массе красные карлики. Красные карлики очень быстро сжигают литий-7, а почти все коричневые карлики к этому не способны. Тогда считали, что возраст Плеяд составляет около 70 млн лет, и даже легчайшие красные карлики за это время должны были полностью избавиться от лития. Если бы мы нашли литий в спектре PPl 15, то имели бы все основания утверждать, что имеем дело с коричневым карликом. Задача оказалась непростой.
Первый спектрографический тест в ноябре 1994 года действительно выявил литий, а вот второй, контрольный, в марте 1995-го, этого не подтвердил. Естественно, мы пребывали в разочаровании – открытие ускользало прямо из рук. Однако первоначальное заключение было правильным. PPl 15 оказался парой коричневых карликов, обращающихся вокруг общего центра масс всего за шесть суток. Поэтому-то спектральные линии лития то сливались, то расходились – вот мы и не увидели их в ходе второго теста. Попутно мы обнаружили, что Плеяды старше, нежели считалось ранее».
В этом же 1995 году появились сообщения об открытии еще двух коричневых карликов. Рафаэль Реболо и его коллеги по Астрофизическому институту Канарских островов обнаружили в Плеядах карлик Teide 1, который был также идентифицирован с помощью литиевого метода. А в самом конце 1995 года исследователи из Калифорнийского Технологического института и университета Джонса Хопкинса сообщили, что красный карлик Gliese 229, который находится всего в 19 световых годах от Солнечной системы, обладает компаньоном. Этот спутник в 20 раз тяжелее Юпитера, и в его спектре имеются линии метана. Молекулы метана разрушаются, если температура превышает 1500К, в то время как атмосферная температура наиболее холодных нормальных звезд всегда больше 1700К. Это позволило признать Gliese 229-B коричневым карликом, даже не используя литиевый тест. Сейчас уже известно, что его поверхность нагрета всего до 950К, так что этот карлик очень даже холодный.
Астрономы постоянно узнают о коричневых карликах что-то новое. Так, в конце ноября 2010 года ученые из Чили, Англии и Канады сообщили об открытии в созвездии Девы всего в 160 световых годах от Солнца звездной пары из двух карликов разных цветовых категорий – белого и коричневого. Последний принадлежит к числу самых горячих карликов Т-класса (его атмосфера нагрета до 1300 К) и по массе равен 70 Юпитерам. Оба небесных тела гравитационно связаны, несмотря на то, что их разделяет огромная дистанция – примерно 1 световой год. Звездную пару коричневых карликов астрономы наблюдали с помощью телескопа UKIRT (United Kingdom Infrared Telescope) с 3,8-метровым зеркалом. Этот телескоп, расположенный рядом с вершиной Мауна-Кеа на Гавайях на высоте 4200 метров над уровнем океана – один из крупнейших в мире инструментов, работающих в инфракрасном диапазоне.
В настоящее время коричневых карликов известно вдвое больше, чем экзопланет, – примерно 1000 против 500. Исследование этих тел заставило ученых расширить классификацию звезд и звездоподобных объектов, поскольку прежняя оказалась недостаточной.
Коричневые карлики – это холодные звезды, атмосфера которых достаточно теплая и богатая «земными» микроэлементами для того, чтобы в ее верхних слоях можно было поселить микробов с Земли. Новое исследование ученых из Великобритании воскрешает идеи Карла Сагана о внеземных экосистемах.
Плавающие сами по себе в Млечном пути, коричневые карлики (звезды, масса которых в десятки раз превосходит массу Юпитера, но недостаточно горячие и большие, чтобы пылать как обычные светила) могут быть потенциальной «космической недвижимостью» для будущих поколений людей. Согласно новому исследованию, верхние слои их атмосферы обладают тем же температурным диапазоном и давлением, что и на Земле, а это значит, что в них вполне можно поселить микроскопические организмы.
Идея расширить зону обитания земных организмов по всей Вселенной пусть и не нова, но до сих пор не рассматривает все возможности этого действия. «Вам не обязательно нужна планета с поверхностью, похожей на земную», говорит Джек Йейтс, планетарный ученый из Университета Эдинбурга в Великобритании, возглавляющий исследование. В атмосфере живут не только птицы. В течение многих десятилетий биологи накапливали знания о микробах, дрейфующих высоко над Землей. Еще 1976 году Карл Саган моделировал экосистемы, которые могут развиваться в верхних слоях атмосферы Юпитера, используя в качестве источников питания солнечную энергию. В России тоже существовала теория о том, как можно заселить микроорганизмы в богатую углекислым газом атмосферу над негостеприимной поверхностью Венеры.
Йейтс и его коллеги мыслят в том же ключе, однако располагают данными, которых у Сагана и близко не было. Температура поверхности некоторых коричневых карликов, обнаруженных в 2011 году, примерно комнатная, так что находиться в нижних слоях атмосферы более чем комфортно. В марте 2013 года исследователи даже обнаружили на WISE 0855−0714, который находится всего в 7 световых годах от Земли, атмосферу с водяными облаками!
Йейтс решил обновить расчеты Сагана и определить размеры и плотность атмосферы, а также потенциальные стратегии по выживанию микробов в ксено-среде, полной преимущественно газообразного водорода. Основная проблема заключается в том, что если взлететь слишком далеко, то в ней можно просто-напросто замерзнуть.
В таком мире небольшие природные «грузила» у микробов будут иметь больше шансов, чем «поплавки», предложенные Саганом. Об этом ученые сообщают в Astrophysical Journal. Но многое зависит от погоды: если в атмосфере будут мощные восходящие ветры (такие, как на Юпитере или Сатурне), более тяжелые существа тоже смогут занять свою экологическую нишу. При отсутствии солнечного света, микробы могут питаться химическим веществами, поскольку наблюдения за атмосферами коричневых карликов показывают, что в них содержится большая часть «земных» ингредиентов: углерод, водород, азот и кислород, а вот фосфора скорее всего нет.
Тестирование на наличие уже существующей жизни на этих объектах потребовала бы сильную спектральную сигнатуру жизнедеятельности микроорганизмов (проще говоря, анализ проб метана или кислорода из атмосферы). Другой вопрос заключается в том, что привычная нам белковая жизнь навряд ли могла зародиться на планете, где нет гидротемальных жерл, наполненных водой (именно в этих геологических образованиях, как считает большинство ученых, и зародилась жизнь на Земле). Но сама идея заселения земными организмами холодных звезд очень перспективна, и в будущем вполне вероятно станет основой для первых межзвездных колоний.
|